DOI: 10.36163/aon-2024-0004

CYBERSECURITY OF UNMANNED SURFACE VESSELS: IMECA BASED ASSESSMENT AND PROTECTION AGAINST AI POWERED ATTACKS

Oleg Ivanchenko Naval Institute of the National University "Odessa Maritime Academy" Odesa, Ukraine o.ivanchenko@khai.edu

Vyacheslav Kharchenko National Aerospace University "Kharkiv Aviation Institute" Kharkiv, Ukraine v.kharchenko@csn.khai.edu

Nataliia Smyrynska Naval Institute of the National University "Odessa Maritime Academy" Odesa, Ukraine nataliia.smyrynska@gmail.com

Olena Veprytska National Aerospace University "Kharkiv Aviation Institute" Kharkiv, Ukraine o.verytska@csn.khai.edu

ABSTRACT

The study is devoted to the analysis of cyber security and its impact on the efficiency and safety of the applying single Unmanned Surface Vessels (USVs) and USV swarms (USVS). Based on a review of modern USV systems, a generalized architecture and model are proposed, and the impact of the cyber and physical environment is analyzed. The types of cyberattacks on USVs are systematized taking into account the use of artificial intelligence (AI). The set of scenarios identified as "AI powered attacks against AI powered protection" is clarified considering features of USV/USVS application. Assessment of cyber security of USV/USVSs is carried out using the IMECA (Intrusion Modes and Effects Criticality Analysis) technique and Security Informed Safety (SIS) approach. Illustrative examples of IMECA based analysis of USV cyber assets/digital systems are provided taking into account specific threats, vulnerabilities, attacks and their effects for systems security and safety.

Keywords – unmanned surface vessel, threats and vulnerabilities, IMECA, AI powered attacks, countermeasures

1. INTRODUCTION

Developing and deploying Unmanned Surface Vessels (USVs) and USV swarms (USVS) enhances efficiency, safety, and cost-effectiveness across civil and military sectors. The study is devoted to the analysis of cyber security issues and their impact on the efficiency and safety of the applying USVs and USVS. Objectives are to suggest and illustrate applying a risk-oriented method of USVs/USVS cybersecurity analysis and choice of countermeasures according to criteria "acceptable risk/minimal cost" considering AI powered attacks and protection.

2. METHODOLOGY

The methodology involves a comprehensive review of contemporary USVS, leading to the formulation and analysis of a generalized architecture and model [1], while considering the influence of both cyber and physical environments. Categorization and analysis of potential cyber threats targeting USVs, particularly those employing AI, are systematically conducted. Special attention is given to refining previously identified scenarios labeled as "AI-powered attacks against AI-powered protection"[2] to suit the specific characteristics of USV/USVS applications. Furthermore, the cybersecurity assessment of USV/USVSs employs the IMECA technique and the Security Informed Safety approach [1].

3. IMECA

The development of an IMECA table and risk matrix for AI-powered USVs entails a thorough analysis to gauge the associated risks [1,2]. This analysis encompasses factors such as the nature of potential threats, system vulnerabilities, types of attacks, expected consequences, likelihood of occurrence, severity of impacts, and overall risk assessment. By systematically evaluating these elements, organizations operating USVs can gain valuable insights into the specific risks they face and prioritize mitigation efforts effectively to ensure the safety and security of their vessels and maritime operations. The results of the IMECA analysis of attacks on AI-powered USV shown in table 1.

N₂	Threat	Vulnerability	Attack	AI for Attack	JSV (with satellite interact Effects	Countermeasures	
JNS	Tineat	vunerability	Attack	Enhancement	Effects	Countermeasures	
1	Incorrect	The unselightlity of	Adversarial		Potentially	1 Al Degulation &	
1		The unreliability of		Eg. AI-generated		1. AI Regulation &	
	operation of	AI systems is due to	Attacks	Telemetry/GPS	misinterpretation of the	Standardization	
	the system due	the misconception	(Generative	Spoofing	environment, navigation	2. Anomaly Detection	
	to a	that the training data	AI)		errors, or compromised	3. Adversarial Training	
	compromised	will always match			decision-making	4. Partial Human Control	
	AI system	the actual data			capabilities	Systems	
2	Autonomous	AI-powered	Hacking of	Using AI models	Data leak/loss. Use for	1. AI Regulation	
	USVs	Autonomous USVs	USV or AI	from untrusted	malicious purposes,	2. Intrusion Detection	
		exploit	components	sources that may	privacy invasion,	Systems (IDS)	
		vulnerabilities when		contain pre-biased	weaponization, or	USVs Licensing	
		subjected to hacking		or backdoor	carrying out cyber and	Forensics Techniques	
		attempts		behavior	physical attacks etc.	Usage	
3	USV Failure	Limited USV	DoS/DDoS,	-	Communication	1. IDS:	
	(Availability	resources on board	Flooding		disruption, network	Rule-Base, Signature-Based,	
	Violation)				congestion, performance	Anomaly-Based	
					degradation,	2. Standardization of USVs	
					compromising the USVs'	Security Measures	
					functionality		
4	Interception of	Open frequencies	Eavesdr	-	Leakage of confidential	1. Data encryption	
	signals from	Weak encryption	-qo		information	2. PLS-Based Secure	
	the satellite	Insufficient	ping			Communications in Satellite	
		authentication	Pillg			Internet	
1						3. PLA (Physical Layer	
						Authentication)	

Table 1. IMECA analysis of attacks on AI-powered USV (with satellite interaction)

Based on the results of the analysis of attacks, a matrix of criticality (cyber risks) of the systems was built before and after (see Table 2) the implementation of countermeasures.

Table 2. Criticality matrix of cyber risks of systems before(a) and after(b) implementation of countermeasures

		a)			b)					
		Severity					Severity			
5		Low	Medium	High			Low	Medium	High	
Probability	Low				Probability of occurrence	Low			1	
of	Medium		4	1,3		Medium	4	3	2	
occurrence	High			2		High				

4. CONCLUSION

The main contribution is methodology, IMECA-based technique and tool to assess USVS cybersecurity and choose the countermeasures (CMs) according to criteria "acceptable risk-minimal cost". Future research will be dedicated to development of software for support of USVS security/safety analysis and insurance.

REFERENCES

- Illiashenko O., Kharchenko V., Babeshko I., Fesenko H., & Di Giandomenico, F. Security-Informed Safety Analysis of Autonomous Transport Systems Considering AI-Powered Cyberattacks and Protection. Entropy 25.8 (2023) 1123.
- 2. Veprytska O., Kharchenko V., Analysis of AI powered attacks and protection of UAV assets: quality model-based assessing cybersecurity of mobile system for demining, IntelITSIS'2024 (2024).