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MANOEUVRING TO REQUIRED APPROACH 
PARAMETERS - CPA DISTANCE AND TIME 

ABSTRACT 

The predicted object CPA (Closest Point of Approach) distance DCPA and, to 
a lesser extent, the time interval to its occurrence TCPA are well established criteria 
for collision threat. They are approach parameters widely used as well in collision 
avoidance systems featuring computer - aided tracking (ARPAs) as in manual radar 
plots. The scope of this paper is aimed at the problem which although it can be and it 
is connected with collision avoidance manoeuvres, but it is rather reversed and can 
be applied for intentional approaches or in naval tactical manoeuvres - what own 
speed and/or course manoeuvre should be undertaken to achieve the required CPA 
distance and/or time? 

ASSUMPTIONS AND INPUT PARAMETERS 

For the purposes of this analysis, own vessel and extraneous objects of interest 
are regarded as if the mass of each object was concentrated at a point. It will be 
assumed that all moving external objects are travelling at constant speed and course. 
In the movable plane tangential to the Earth’s surface Cartesian coordinates system 
Ox, Oy (Fig. 1) with Oy pointing North O is at the present position of own vessel. It 
will also be assumed that manual plots or the radar processing and tracking has 
yielded the present relative position of the extraneous object X, Y and components 
of its true Vtx, Vty or relative Vrx, Vry speed. The relationship of the own and the 
object speeds can be described by equations 

Vtx = Vrx + Vx  (1) 

Vty = Vry + Vy  (2) 

where: Vx, Vy - own speed components, 
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Vx = V sin ψ (3) 

Vy = V cos ψ (4) 

V V= Vx y+2 2  (5) 

where: ψ - own course (the angle measured clockwise from Oy to V). 

 
Fig. 1. Input parameters 

 
 

The own and the object’s motion parameters should be either ground or sea 
referenced and a drift angle is assumed to be zero.  
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The relative position of an extraneous object, at time t, is given by 

 X(t) = X + Vrx t  (6) 

 Y(t) = Y + Vry t  (7) 

and then [Lenart, 1986] 
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where:  

V V= Vr rx ry+2 2  (10) 

DERIVATION OF EQUATION V = F(ψ, DCPA) 

From equations (8) and (10) squaring both sides and rearranging terms we 
obtain a quadratic equation in Vry 

(X2 - D2
CPA)V2

ry - 2XYVrxVry + (Y2 - D2
CPA)V2

rx = 0  (11) 

whose solution is 

 Vry = ADCPA Vrx  (12) 

where: 

 A
XY D R

X DDCPA
CPA

CP

=
−2 2
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A

± −2 2

 (13) 

 R X= Y+2 2   (14) 

From equations (1) through (4) 

 Vrx = Vtx - V sin ψ  (15) 

 Vry = Vty - V cos ψ  (16) 

 
Substitution in equation (12) and rearranging yields 
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V B
A

DCP

DCPA

=
sin

A

− cosψ ψ

R DCPA≥

V ≥ 0

CPA ≥ 0

YVtx ty

  (17) 

where:  

 BDCPA = ADCPA Vtx - Vty  (18) 

and real solutions exist if  

  (19) 

Equation (17) gives the speed V which own vessel must adopt to achieve the 
required CPA distance DCPA (in respect to the selected object) for different assumed 
own courses ψ, but we should search for solution  

  (20) 

and V, ψ for which 

 T   (21) 

Condition (21) means that the closest approach is at present or will be in the future 
and not in the past. Equation (21) (from equations (9), (15) and (16)) can be 
rearranged to the form 

V X Y XV( sin cos )ψ ψ+ ≥ +   (22) 

A graphical interpretation of ADCPA and BDCPA can be obtained in Cartesian 
coordinates of own speed Vx , Vy substituting in equation (17) equations (3) and (4) 

Vy = ADCPA Vx - BDCPA  (23) 

In these coordinates all points corresponding to the required value of DCPA will lie on 
two straight lines having slopes ADCPA (ADCPA and BDCPA can have two values ) and 
cutting the Vy axis at -BDCPA. 
A conventional PPI displays the position of each object by plotting them in polar  
(r, ψ) or Cartesian (x, y) coordinates. If we apply a scaling factor τ to the speed 
coordinates (V, ψ) or (Vx, Vy) such that  
 

r = V τ  (24) 

x = Vx τ  (25) 

y = Vy τ  (26) 

then the position and speed coordinates can be plotted on a common display.  
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Equations (17) and (23) then transform respectively to  

r B
A

DCPA

DCPA

=
sin

  (27) 
−
τ

ψ ψcos

and 

y = ADCPA x - BDCPA τ  (28) 

In the combined coordinates frame for plotting position and speed can also be 
plotted positions and speed vectors of objects and the own speed vector (real or 
simulated). Figure 2 illustrates a family of lines (23) or (27) and (28) for various 
required DCPA and an exemplary object. 

 

 
Fig. 2. Lines DCPA=const. and circles TCPA=const. 

τ=0.2 h, X=Y=5 n.m., Vtx= -10 kt, Vty=10 kt 
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Equation (17) can yield up to two real own speeds V. Let Dc be the distance at 
which the object crosses the course of own vessel. It can be proved (Lenart, 1986), 
that if for an assumed own course ψ exists V=f(ψ, DCPA=0) with TCPA>0 (own speed 
which will lead to a collision) then for V<V=f(ψ, DCPA=0) the object will pass ahead 
(Dc>0), and for V>V=f(ψ, DCPA=0) the object will pass astern (Dc<0).  

DERIVATION OF EQUATION ψ = G(V, DCPA) 

If we search for own course ψ which will lead to the required CPA distance 
DCPA at an assumed own speed V then we can get an inverse function ψ=g(V, DCPA) 
to the function V=f(ψ, DCPA) by substitution in equation (17) trigonometric identities 

sin ψ =
+

2

1

tan

tan

ψ

ψ
2

2
2

 (29) 

cosψ =
−

+

1

1

tan

tan

ψ

ψ
2

2

2

2
 (30) 

which will result in equation 

( ) tan tanV B A V VDCPA DCPA− +2

2
2

2
( )BDCPA− +

ψ ψ   (31) 

and its solution 

tan
( )ψ

2
12 2

=
± +

−
A V A V

B V
DCPA DCPA

DCPA

2− BDCPA   (32) 

Real solutions exist if 

V
A

2 ≥
BDCP

DCPA

2

2 DCPA≥A

1+
R and  (33) 

and equation (32) can give up to four own courses ψ which will lead to the required 
CPA distance DCPA at an assumed own speed V if they additionally fulfil condition 
(22). 
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DERIVATION OF EQUATION V = F(ψ, TCPA) 

Substitution in equation (9) equations (10), (15) and (16) gives a quadratic 
equation in V 

TCPAV2-[(X+2VtxTCPA)sinψ+(Y+2VtyTCPA)cosψ]V+(Vt
2TCPA+XVtx+YVty)=0  (34) 

whose solution is 

V A B A BTCPA TCPA TCPA TCPA= + ± +sin cos ( sin cos )ψ ψ ψ 2 CTCPA−ψ   (35) 

where: 

A VTCPA tx
X

TCPA

= +
2

  (36) 

B VTCPA ty
Y

TCPA

= +
2

  (37) 

 C V
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+

 Vt
2 = Vtx

2 + Vty
2  (39) 

Real solutions exist if 

(   (40) A BTCPA TCPAsin cos )ψ 2 CTCPAψ+ ≥

V ≥ 0Equation (35) can yield up to two speeds  which own vessel must adopt 
to achieve the required time to CPA TCPA (in respect to the selected object) for 
different assumed own courses ψ. 

A graphical interpretation of solutions given by equation (35) can be obtained 
in Cartesian coordinates of own speed Vx, Vy substituting in equation (34) equations 
(3) and (4) 

 ( ) ( )V A V Bx TCPA y TCPA− + −


2 R

TCPA

=


2

2

2
 (41) 

The above equation reveals that the locus of points for which TCPA is a constant is a 
circle centred at (ATCPA, BTCPA) and having radius R TCPA/ ( )2 . Figure 2 illustrates a 
family of circles for various values of TCPA. 
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DERIVATION OF EQUATION ψ = G(V, TCPA) 

If we search for own course ψ which will lead to the required time to CPA TCPA 
at an assumed own speed V then we can get an inverse function ψ=g(V, TCPA) to the 
function V=f(ψ, TCPA) by substitution in equation (34) identities (29) and (30) which 
after solving yields 

 tan ψ ψ ψ ψ

ψ ψ2

2 2

=
± +

+

A A B

B C
TCPA TCPA TCPA

TCPA TCPA

ψ
2− C TCPA

  (42) 

where: 

 AψTCPA = X + 2 Vtx TCPA = 2 ATCPATCPA  (43) 

 BψTCPA = Y + 2 Vty TCPA = 2 BTCPA TCPA  (44) 

 C
V V T XV YV
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V C

VTCPA
t CPA tx ty TC
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( )2 2
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C TCPAψ
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  (45) 

Real solutions exist if 

A BTCPA TCPAψ ψ
2 2+   (46) 

and equation (42) can give up to two own courses ψ which will lead to the required 
time to CPA TCPA at an assumed own speed V. 
 

DERIVATION OF EQUATIONS V, ψ = F(DCPA, TCPA) 

From equation (9), taking into consideration equations (10) and (12), we can 
get  

 TCPAV2
rx + TCPAV2

ry + XVrx + YVry = 0  (47) 

 Vry = ADCPA Vrx  (48) 

This system of equations has two solutions 

 Vrx = 0, Vry = 0  (50) 

and 
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 V X A
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The first solution is a consequence of the fact that DCPA (equation (8)) and TCPA 
(equation (9)) are mathematically indeterminate if Vrx=0, Vry=0 (in Fig. 2 all lines 
DCPA and circles TCPA crosses the point Vrx=0, Vry=0 i. e. Vx=Vtx, Vy=Vty) but we can 
assume that in that case DCPA=R and TCPA=0 [Lenart, 1986]. 

The second solution is real if (equation (19)) 

   (53) 

 and with regard to equations (1) through (5) 
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V V= Vx y+2 2   (56) 

 tan ψ =
V
V

x

y

  (57) 

Equations (54) through (57) and (13), (14) can give up to two own speeds V and 
own courses ψ which will lead to the required CPA distance DCPA at the required 
time TCPA. 

POSITION OF CPA 

At the closest point of approach the relative position of the object (in respect to 
our vessel) is (XCPA, YCPA) or in polar coordinates (DCPA, βCPA) or (DCPA, β'CPA) 
where βCPA and β'CPA are true and relative bearings to the object at CPA respectively. 
These parameters are given by equations 

 XCPA = X + Vrx TCPA = X + (Vtx - V sin ψ) TCPA  (58) 

 YCPA = Y + Vry TCPA = Y + (Vty - V cos ψ) TCPA (59) 
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D XCPA CPA YCPA= +2 2   (60) 

tanβCPA
CPA

CPA

X
Y

=   (61) 

 β'CPA = βCPA - ψ  (62) 

and DCPA and TCPA are either required or calculated from equation (60) or (8) and (9) 
transformed to true speeds by substitution equations (15) and 16) 
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Having calculated β'CPA we can also calculate the distance on course Dc and the 
distance abeam Dab [Lenart, 1986] 

Dc =
DCPA

CPAcos 'β
 (65) 

Dab =
DCPA

CPAsin 'β
 (66) 

TIME TO MANOEUVRE 

It has to be emphasized that the calculated above manoeuvres are kinematic and 
should be undertaken immediately. If we require to have the time lapse ∆t for 
calculations, for the decision to initiate a manoeuvre and for the execution of the 
calculated manoeuvre then X, Y in the above equations should be replaced 
by X∆t, Y∆t respectively, given by equations 

X∆t = X + Vrx ∆t  (67) 

Y∆t = Y + Vry ∆t  (68) 
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