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ABSTRACT  

Several types of nonlinear filters (EKF — extended Kalman filter, UKF — unscented 

Kalman filter, PF — particle filter) are widely used for location estimation and their 

algorithms are described in this paper. In the article filtering accuracy for non-linear 

form of measurement equation is presented. The results of complex simulations that com-

pare the quality of estimation of analyzed non-linear filters for complex non-linearities 

of state vector are presented. The moves of maneuvering object are described in two- 

-dimensional Cartesian coordinates and the measurements are described in the polar 

coordinate system. The object dynamics is characterized by acceleration described by 

the univariate non-stationary growth model (UNGM) function. The filtering accuracy 

was evaluated not only by the root-mean-square errors (RMSE) but also by statistical 

testing of innovations through the expected value test, the whiteness test and the WSSR 

(weighted sum squared residual) test as well. The comparison of filtering quality was 

done in the MATLAB environment. The presented results provide a basis for designing 

more accurate algorithms for object location estimation. 

Keywords: 
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INTRODUCTION 

Filtering algorithms used for navigation systems of positioning are based 

on the nonlinear equation of state as well as the measurement equation. They operate 

in a discrete time. Kalman filter allows to estimate error or state of an object in the kth 

step on the basis of measurements in the k-1th step. Kalman filters use information 

about dynamics of the object (system). Knowledge about system dynamics and its 
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correct modeling is the main issue in Kalman filter implementation [Kaniewski, 

2010]. In systems with nonlinear dynamics the object dynamics equations and/or 

observation equations are linearized using the extended Kalman filter (EKF). Line-

arization is carried out by means of partial derivatives of nonlinear state functions or 

their Taylor series expansion [Lampinen, 2004], [Konatowski, 2007]. The alterna-

tive to the EKF is unscented Kalman filter (UKF). This filter is a recursive esti-

mating filter and its properties meet requirements of strongly nonlinear systems 

pretty well [Van der Merwe, 2001], [Arulampalam, 2004]. UKF operates on the 

statistical parameters of these models subjected to the non-linear transformations 

[Doucet, 2000]. UKF is based on unscented transform (UT), which converts the 

state vector into a set of weighted sigma points. These points are than used in 

algorithms for UKF. The UKF algorithm is a set of equations which are neces-

sary to do prediction, innovation and correction steps. Another solution for the 

general filtering problem is based on the particle filter (PF) which uses the sequen-

tial importance sampling where the samples (particles) and their weights are drawn 

from the probability density [Gordon, 1993], [Doucet, 2001]. 

EXTENDED KALMAN FILTER 

Assuming, that measurement and process noises are additive, the basic model 

for EKF filtering can be written as [Julier, 1997], [Lampinen, 2004], [Kaniewski, 

2010]: 

  
kkk

wxfx 
1 ; (1) 

  
111 


kkk

vxhy , (2) 

where: 
n

k
R

1
x  — the state vector, 

m

k
R

1
y  — the measurement vector, 

 kk N Q0w ,~  — the Gaussian noise of the process, 

 11 ,~  kk N R0v  — the Gaussian noise of the measurement, 

 f  — the dynamics model function, 

 h  — the measurement model function. 

 

The idea of the extended Kalman filter, which algorithm was shown in 

Figure 1, is based on the linearization of nonlinear dynamics and measurement 
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functions [Lampinen, 2004], [Sosnowski, 2012]. This is realized, for example, 

via Taylor series expansion of the state 1k
x  around the estimate

|kk 1
ˆ


x : 
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Fig. 1. Algorithm for 

extended Kalman filter 
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Filtering with the extended Kalman filter of the first order (Taylor series 

expansion) consists of initialization, prediction, and actualization processes 

[Konatowski, 2009], (Fig. 1), 
 

where: 

k
F

 

 — the matrix of the dynamics model at the time tk, 

1k
H

 

 — the matrix of the measurement model at the time tk+1, 

1|1
ˆ
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x

 

 — the state estimate at the time tk+1, based on measurements  
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yy ,...,
1 , 
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 — the covariance matrix of the errors of the state estimate, 
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 — the covariance matrix of the errors of the state process prediction  

at the time tk+1, 
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 — the error of the measurement prediction at the time tk+1, 
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Extended Kalman filter is easy in use and computably efficient. One of its 

limitations is that it works well only with small nonlinearities (close to linearity) 

since it is based on local linear approximation. Another deficiency is disregard 

of probabilistic uncertainties arisen in linearization of equations of state. Thus, 

for highly nonlinear models the EKF is not the optimum estimator [Gordon, 

1993]. Due to Jacobians, measurement model and dynamics model must be dif-

ferentiable. Only additive and Gaussian process noises are allowed. These problems 

can be solved by the unscented Kalman filter. 
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UNSCENTED KALMAN FILTER 

Unscented Kalman filter, proposed by Julier and Uhlmann [Julier, 1997], 

is based on Unscented Transformation (UT) used for statistics computation (first 

two moments) of a random vector undergoing transformation by nonlinear func-

tion. Unscented transformation describes statistical properties of the vector being 

transformed with the use of a finite set of points, called sigma points. The set of 

sigma samples is chosen deterministically so that statistical moments of the first 

and second order of the original distribution are projected in a complete way. 

Next these points are transformed via nonlinear process to the new space where 

they describe statistics of the distribution being transformed. On the base of 

them output statistics are calculated. The entire process can be described in three 

stages: 

 assignment of number and location of a set of sigma points and their weights, 

based on unique characteristics (moments) of original distribution; 

 nonlinear transformation of each point for obtainment of a new set of the 

points; 

 computation of output statistics on the base of the transformed sigma points. 

The algorithm of the unscented Kalman filter is a direct enlargement of 

the unscented transformation and consists of initialization, prediction, and actu-

alization processes [Lampinen, 2004], [Konatowski, 2004], [Sosnowski, 2012]. 

It is presented in Figure 2. 

For Gaussian processes Van de Merwe [Van der Merwe, 2001] suggested 

scaling parameter values as follows:    021 . The major advantage 

of the unscented Kalman filter is that it is not based on the local approxima-

tion. The Jacobians are not calculated so the functions f and h do not have to be 

differentiable. The use of sigma points in the UKF algorithm makes the filter 

storing higher order moments then the expanded Kalman filter [Doucet, 2000]. 

Like the EKF, the unscented Kalman filter can be used only for models with 

Gaussian noises. For the estimation of the state with non-Gaussian noises particle 

filters are used which are based on the sequential Monte Carlo method [Kona-

towski, 2010]. 
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Fig. 2. Algorithm of the unscented Kalman filter 

 

Where: 

 T00
ˆ 00xx a  — the initial expanded state vector, 
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 RQPP
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diaga
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 — the initial expanded covariance matrix of the state, 

     nW m /
0

 

 — the initial weights of average values, 

       2

0
1/ nW c  — the initial values of the covariance matrix, 

n

 

 — the dimension of the expanded state matrix, 



 

 — the scaling parameter of the first order, 



 

 — the parameter for sigma points dispersion around the average value, 

 Tkkk
a
k vwxx   — the expanded state vector, 
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 — the expanded vector of the state estimate, 

a

kk |
P

 

 — the expanded covariance matrix of the state, 

 a
ikk

a
ikk ,|,|1 XfX   — the sigma points propagated by the dynamics model, 

 a
ikk

a
ikk ,|1,|1   XhY  — the sigma points propagated by the measurement model, 

kk |1
ˆ


y  — the predicted value of the measurement, 

11  kk yy
P  — the predicted measurement covariance, 

11  kk yx
P  — the hybrid covariance matrix of the state and measurement. 

PARTICLE FILTER 

Particle filter uses Monte Carlo method — numerical method allowing cal-

culation, for example, integrals impossible to solve in an analytical way [Arulampa-

lam, 2004], [Cappe, 2005]. In this method, classical computations of statistical values 

are substituted by generation of samples on the base of random distribution and next 

on the base of estimation of distribution parameters from the average sample values. 

In the ideal case, for sample number endeavoring to infinity, the expected 

value of a discrete variable reproduces a real expected value of a continuous variable 

with a certainty close to 100%. 

Frequently, due to high computational complexity, it is not possible to 

directly obtain samples from the probability density distribution of a variable 

p(x). In this case an importance sampling technique is applied. This is based on 

the use of an approximate distribution (an importance distribution) from which 

sample can be generated in a simple way [Lampinen, 2004], [Konatowski, 2010]. 
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Since the samples are generated from the importance distribution, a misrepresen-

tation occurs which then can be overcome by attribution of adequate weights 

(weights) to individual samples. 

The importance distribution  x  should allow easy sample generation 

and computation of their statistical parameters. Optimum, in terms of a variance, 

importance distribution should fulfill the condition 

    
1:111:11

,|,|



kkkkkk

yxxpyxx . (5) 

Particle filtering uses sequential importance sampling SIS which is a re-

cursive variant of the importance sampling. Its operation is based on the fact that 

one calculate can in each temporal step k an importance distribution of the state 

kx  and weight values in a recursive way. Algorithm SIS [Lampinen, 2004] uses 

a set of weighted particles   Nixw i
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yxp . Disadvantage of this approach is that majority of 

weights equals zero, which happens very often. This is a so called degeneration 

problem which prevents practical implementation of particle filtering. An attempt 

to solve this problem is to re-sequential importance sampling SIR. In effect, 

particles with very low weights (low probabilities) are eliminated and those with 

high weights are duplicated. 

The algorithm for re-sequential sampling is the following: 

 calculation of new points 
)(i

kx  on the base of importance distribution 
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and their normalization, so that the sum of all weights is equal zero 

 check of the criterion and possible realization of a resampling with fixed step 

number or adaptive resampling. 

Generally, resampling is executive when particle effective number is 

much less than their total number. Practically, this is accomplished when 
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
N
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keffective
wn
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2)(  is less than 10% of the total particle number, where )(i

k
w  
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are the normalized weights of ith particle in the temporal step k. The method of 

resampling greatly reduced the problem of degeneration [Doucet, 2001], 

[Konatowski, 2009]. The projection of better importance distributions will help 

to eliminate this problem. 

Most often applied particle filter is a bootstrap filter (BS). It owes high 

popularity above all to its simplicity. This filter is a variant of SIR where the 

dynamics model )|(
1 kk

xxp
  

is used as an importance distribution. Because of 

low efficiency of the importance distribution, good results need a generation of  

a high number of Monte Carlo samples. The bootstrap filter is characterized by 

resampling executed in each temporal step [Sosnowski, 2012]. The algorithm of this 

filter (Fig. 3) is very similar to the SIR and can be presented in the following way: 

 generation of a new set (using dynamics model)  Nix i

k
,...,1:)(   

  )(
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1
|~ i
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i

k
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; (8) 

 calculation of weight values 
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and their normalization so that the weight sum is equal 1 

 execution of resampling: 
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Fig. 3. Algorithm for bootstrap type particle filter 
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METHODS FOR ASSESSMENT OF ESTIMATION ACCURACY 

Most often determines the quality of the filtration mean square error [Kaniew-

ski, 2010]. One of the methods for assessment of filtering accuracy is a statistical 

testing of the innovation process. The necessary and sufficient condition for the 

filter optimality is that innovation process, which is a difference between current 

values and expected values of the measurement vector, had normal distribution. 

A behavior of the innovation process can be assessed using the following statis-

tical tests: expected value test, whiteness test, and the weighted-sum-squared- 

-residual test (WSSR) [Sosnowski, 2012]. 

T h e  e x p e c t e d  v a l u e  t e s t  

Assuming that the innovation vector ei is ergodic and Gaussian [Julier, 

1997], an average value of the sample em̂  can be used for estimation of an average 

value of the population me. The estimator of the average value for the ith component 

of the innovation vector ie , expressed by the formula  

    



N

k

ie
kNi

1

1ˆ em , for i = 1, …, N, (10) 

where: 

i — the component number of the innovation vector, 

N — the number of samples in the innovation vector, 

 i
e

m̂  — the estimator of the average value for the ith component of the innovation  

vector, 

 kie  — the ith innovation component for the temporal step k,  

has normal distribution with the average value me and the variance equal Ree(i)/N. 
 

The expected value test relies on a verification of the null hypothesis 

  0 : H0 iem . The probability of the rejection of the H0 hypothesis for the 

threshold value τi with the significance level α is 

                 
 5,015,01   ˆ P NiiNiii

eeeieeee
RmRmm . (11) 

It follows that the probability of acceptance or rejection of the H0 hy-

pothesis trueness can be written as: acceptance of H0 for   ie i m̂  or rejection 

of H0 for   ie i m̂ . For the null hypothesis H0 average value of the innovation 
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vector is equal zero, therefore it is accepted that at the significance level 5% 

(α = 0.05) the threshold value τi is 

   1ˆ96,1  Ni
eei

R , (12) 

where  

 ieeR̂  is the variance of a set of a realization of the ith component of the ergodic 

innovation process, expressed by the formula 

    
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1

21ˆ eR . (13) 

Rejection of the null hypothesis leeds to the acceptance of the alternative 

hypothesis H1:   0iem . 

T h e  w h i t e n e s s  t e s t  

The whiteness test verifies whether the covariance function for the ergodic 

innovation vector conforms to the covariance function of the uncorrelated white 

noise vector [Lampinen, 2004]. The covariance function of the ith covariance 

component, given by the dependence 
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is used as the estimator, where τ is a delay of a correlation or a normalized co-

variance function 

      ii,ki,k
eeeee

1ˆ ˆˆ  RRρ . (15) 

For high N values this function takes form of the normal distribution 

with the expected value equal zero and the covariance equal 1/N. At 5% signifi-

cance level a threshold level can be obtained in the form of 

 5,0 96,1  N
i
 . (16) 

Thus for high N values even 95% of the estimator value of the normalized 

covariance function for the ith component is in the range  

   5,0 96,1ˆ  Ni,k
e
ρ . (17) 
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This test is useful for detection of inaccuracies of a model results applied 

for single components of the innovation vector, however for large observation 

vector size is very time-consuming. 

T h e  W S S R  t e s t  

The WSSR test (weighted-sum-squared-residual) accumulates the entire 

information on the innovation vector in the window of the length N. The WSSR 

test is determined from the analysis of a value of the residual vector ek and its 

covariance matrix Re(k). This estimation is given by the formula 

     N l  kl
ke

l

Nlk

k
T  



  forˆ 1

1

eReρ . (18) 

It is based on verification of the null hypothesis H0, i.e. on comparison 

of a  lρ̂ value with the threshold value τ and taking one of the two decisions: 

acceptance of H0 when   lρ̂ or rejection of H0 when   lρ̂ .  

For the significance level α, the probability of rejection is  

        αNpNpτNpNp(l) 
 5,05,0

2 2 ˆ P ρ , (19) 

where  

N is the length of observation window and p is the dimension of the observation 

vector. For α = 0,05 we get 

 Np.Npτ 2961 . (20) 

It is accepted, that for  lρ̂  distribution assumed Gaussian the length of ob-

servation window fulfils the condition Np > 30. With correct filter operation for 

at least 95% of the time, the  lρ̂  values should remain below the threshold value τ. 

RESEARCH OF THE EKF, UKF AND PF FILTERS 

In simulation research the object movement was described in the two- 

-dimensional Cartesian coordinate system while measurements in a polar coor-

dinate system. Object dynamics is characterized by the state vector 

  T1111111
y
k

y
kk

x
k

x
kkk avyavx  x , (21) 
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where: 
xx

k

x

kkk k
waTTvxx 



2

1
5,0 ,  yy

k

y

kkk k
waTTvyy 



2

1
5,0  — the location coordinates, 

x

k

vx

k

x

k

x

k
wTavv 

1
,  

y

k

vy

k

y

k

y

k
wTavv 

1
  — the velocity components, 

x

k

ax

k

x

k
waa 

1
,  

y

k

ay

k

y

k
waa 

1
  — the acceleration components, 

     12.1cos815015.0
12y ,y ,y ,

1






 




kaaa x

k

x

k

x

k
 — the function of acceleration  

changes, 
 

k
w  — the adequate components of the vector of the state noise with a distribution  

 Q0~w ,Ν , 

 222222 yyxx avyavx
diag Q

, 

T — the discreteness period. 

 

Observation model takes the general form 

  
kkk

vxhy   for  R0v ,~  , (22) 

where the nonlinear measurement function [Sosnowski, 2012] is 

   

T

22

122T
tan




























 

kk

y

kk

x

kk

k

k

kkkkk

yx

vyvx

y

x
yx 

k
xh , (23) 

for measurement matrix   222
  diagkR , in which the measuring values 

are: k  — distance, k
  — azimuth angle and k  — Doppler velocity. 

In simulation tests the following initial conditions were taken: the P0 

unit matrix of uncertainties, the Q unit variance matrix of the state vector noises, 

while the initial values of the state vector and measurement errors matrix were 

found according to Ristic: 

  2121T

0
 20 80 100 51 50 200  msmsmmsmsmx ; (24) 

  2222  9deg 1 5000 62   smmdiagR . (25) 

In Figure 4 the results of the estimating the object location by three fil-

ters against actual route and the route measured are shown. It was assumed that 

object is located in the initial position x0 = 200 km and y0 = 100 km. 
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Fig. 4. Locations of an object estimated by the filters for the nonlinear measurement function 

 

In Figure 5 errors of the estimation of the state vector elements, i.e. loca-

tion components x, velocity components vx, and acceleration components ax are 

illustrated. 

 

 

Fig. 5. Representation of location component x, velocity vx, and acceleration ax with their errors 
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In Figure 6 presented are the error values of the location component x 

and the velocity component vx for three filters together with confidence intervals 

± 1,96 σ, in which should be 95% of the process values. 

 

 
Fig. 6. Whiteness test results for location component x and velocity error vx  

for the EKF, UKF, and BS filters 

 

From the obtained error values for the object location and velocity estima-

tion by analyzed filters, a clear advantage of the BS filter over the UKF and EKF 

filters is seen. In Table 1 the scale of values of the state vector elements found 

beyond the threshold values are shown. 

 
Tab. 1. Combination of the filter estimation results 

 
Percentage of values beyond the threshold values 

x y vx vy ax ay 

EKF 97 97 94 99 31 32 

UKF 21 18 20 19 6 14 

BS 11 7 3 1 4 9 

 
Table 1 shows that all the components of the state vector are best estimated 

by BS filter. Estimation errors, determined for one set of input data of the filter 

zk, remain in their associated ranges ± 1,96 σ for about 89–99% of the time. 

Components of the measurement residual vector ek of the UKF filter exceed the 

± 1,96 σ range for 6–21% of the time. In turn, the estimation results of the EKF 

filter show a weak matching of the filtering algorithm to the estimated state xk. 
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In Figure 7 and Table 2 cumulative results of filter estimation for whiteness 

tests, i.e. realization conformity the individual components of the measurement 

residuals vector ek with corresponding confidence intervals ± 1,96 σ are presented. 

The WT (whiteness-test) results are confirmed by the WSSR test showing 

a conformity of a variance of the measurement residuals vector with theoretical 

values of the Re matrix variance. 

 

 

Fig. 7. Whiteness test results for the innovation vector 

 

Table 2. The list of estimation results of filters for whiteness test and WSSR test 

 

Percentage of values outside the confidence interval  

Whiteness test  
WSSR 

  .ˆ innov
ee

R    .ˆ innov
ee

R    .ˆ innov
ee

R  

EKF 60 36 28 1 

UKF 2 0 6 1 

BS 0 0 4 2 

 

In order to become independent of the noise influence on estimation accu-

racy, 200 filtering experiments were performed and average filtering errors were 

found (Fig.8). 

 

 

Fig. 8. Average errors of object movement parameters for the EKF, UKF, and BS filters 
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CONCLUSIONS 

Simulation tests included estimation of accuracy of location, velocity, and 

acceleration of an object in two-dimensional Cartesian coordinate system for three 

filters: expanded and unscented Kalman filters and a particle filter of the bootstrap 

type. Distance, azimuth, and Doppler velocity were found from measurement 

results of the object location. The object maneuverability is described by the UNGM 

function (univariate-non-stationary-growth-model). 

The unscented Kalman filter does not need a local approximation, so in 

the process of its implementation the Jacobians are not computed and the nonlinear 

functions of state and measurement do not need to be differentiable. Compared 

with the expanded Kalman filter, this filter stores the second order moments, 

hence the accuracy of the state estimation is better. The EKF and UKF filters can 

be used only in dynamical models with Gaussian noise. For noises with other dis-

tributions particle filters must be applied [Konatowski, 2009]. 

Simulation tests determine filtering accuracy in the form of root-mean- 

-square errors (RMSE) and characterize its efficiency via check what percentage 

of the obtained results, for the fixed significance interval, fulfils criteria for 

threshold values of the expected value test, the whiteness test, and the WSSR test. 

Obtained results for estimation of location, velocity, and acceleration of 

a strongly maneuvering object, together with marked confidence intervals allow 

to find a usefulness of the individual filtering algorithms. When analyzing the 

results of estimation of the state vector elements by tested filters it can be seen 

that the lowest value of vector elements beyond the confidence interval is found 

for BS filter, compared to EKF and UKF filters. In practice, this means the best 

accuracy of this filter in the estimation process of coordinates of the tested ob-

ject, its velocity and acceleration. 

These observations were also confirmed by statistical tests of the innovation 

process carried out with use of: expected value test, whiteness test, and WSSR 

test. A list of percentage of estimation errors (location, velocity, and acceleration) 

placed outside assumed confidence intervals clearly indicate the usefulness of 

the tested algorithms. 
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STRESZCZENIE 

W artykule opisane zostały algorytmy filtrów nieliniowych (rozszerzony EKF i bezśla-

dowy UKF filtr Kalmana oraz filtr cząstkowy PF) stosowane powszechnie do estymacji 

położenia. Porównano dokładność estymacji tych filtrów dla nieliniowego równania 

pomiarowego. Zaprezentowane zostały rezultaty badań symulacyjnych porównujących 

jakość estymacji analizowanych rodzajów filtrów nieliniowych dla złożonej nieliniowości 

wektora stanu. Ruch obiektu manewrującego opisano w dwuwymiarowym układzie karte-

zjańskim, natomiast pomiary w polarnym układzie współrzędnych. Dynamikę obiektu 

charakteryzuje przyspieszenie opisane funkcją Univariate-Non-Stationary-Growth-Model.  

Efektywność badań, poza określaniem błędów średniokwadratowych RMSE, oceniano 

poprzez statystyczne testowanie innowacji za pomocą: testu wartości oczekiwanej, testu 

białości oraz testu WSSR (Weighted-Sum-Squared-Residual). Ocena jakości procesu fil-

tracji została przeprowadzona w środowisku MATLAB. Przedstawione wyniki stanowią 

podstawę do projektowania dokładniejszych algorytmów estymacji położenia obiektu. 

 

mailto:piotr.serafin@wat.edu.pl
mailto:michal.labowski@wat.edu.pl
mailto:piotr.serafin@wat.edu.pl

