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ABSTRACT  

The commonly known method of calculations connected with the Great Circle sailing and 
with similar tasks is executed by navigators with geographical coordinates. This paper deals 
with the possibility of azimuth calculations of the direction between two points on the Earth 
surface with 3-D Cartesian coordinate system. 
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INTRODUCTION 

From the daybreak of the navigation (in astronomy and geodesy as well) geo-
graphical coordinates are commonly used for the description of the position of the point 
in relation to the Earth. So it is natural that all computational methods are based on this 
coordinate system. It is especially perceptible with reference to calculations of the azi-
muth between points and distances between them, which in fact constitutes a basis of 
the planning in the navigation. However, calculations on the sphere or the spheroid 
with the use of angular coordinates are rather complicated. For curved or more compli-
cated surfaces the metric can be used to compute the distance between two points by 
integration. Therefore many facilities were introduced, as for example logarithms and 
different sorts of tables. Different map projections have also been introduced what 
permitted to dissolve suchlike problems with geometrical methods. In spite of the de-
velopment of the computer technique this problem still matters, and the evidence of that 
can be the publications [Pallikaris A. and Latsatos G., 2009] or [Earle M. A., 2008].  

The introduction to the everyday use of satellite navigation systems and In-
ertial Navigation Systems, puts a problem in a new light, because these systems work 
in the three-dimensional space. Therefore, bringing the solution in form of position 
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coordinates to the navigator demands additional calculations, which allow to present 
the three-dimensional calculation as two-dimensional on the surface of the ellipsoid. 
It is known, anyway, that algorithms of the calculation of coordinates in these de-
vices work better basing on the system of spatial Cartesian coordinates than in geo-
graphical coordinates. In consequence, there can be raised a question, whether in the 
era of the general usage of computers the execution of basic calculations in naviga-
tion will be easier, if we will implement it in Cartesian coordinate system?  

An aim of the article is the discussion of the certain method of the calcula-
tion of the azimuth between two points on the earth surface with the utilization of  
3-D Cartesian coordinates. 

GEOMETRY OF NORMAL SECTION  
OF THE ELLIPSOID IN CARTESIAN COORDINATES 

The problem of calculation of direction and distance between two points ap-
pears mostly at the stage of travel planning, but it is also important in dead reckoning 
navigation. In that case, the problem means the calculation of the length and the 
azimuth of the geodesic line. This problem arises also when calculating the position 
with analytic methods, especially when we use such methods as least squares, Kalman 
Filter etc. The calculation of the geodesic line is comparatively complicated and 
labour-consuming, thereby universally complies different simplification. 

In the present work we will use the often applied approach, which is the re-
placement of the geodesic line with the arc of the normal section of the ellipsoid. It 
is admissible because the difference between the length of the normal section of the 
ellipsoid and the length of the geodesic line is in most cases so small that it can be 
skipped. This differences are expressed by equation [Morozov, 1969]: 
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where: 
SP — the length of the arc of the normal section; 
SG — the lenght of the geodesic line;  
Az — azimuth; 
e2 — first eccentrity of the ellipsoid; 
a — semimajor axis of the ellipsoid; 
φ — latitude of the start point. 
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This difference is the biggest on the equator and in case of Az = 45o. However, 
in case of distance 1000 km it reaches only 0,00007 m. Even in the geodesy such values 
are acceptable as very small, in comparison of accidental errors occurring in measure-
ments of angles and distances. Taking into account that in the navigation both require-
ments and measuring-possibilities do not exceed the geodesic ones, the replacement of 
the geodesic line by the arc of the normal section seems fully legitimated. 

Algorithms of solution of this assignment basing on the theory of normal 
sections are known for example from publications of [Jordan and other, 1958] or 
[Zakatov, 1959]. However authors of these formulas still use geodesic coordinates, 
and consequently — trigonometric functions. In present work only 3-D Cartesian 
coordinates are applied, thanks to which the calculation can be deduced from classical 
methods of the geometry of the plane in the three-dimensional space. 

Let us consider the plane with two points P1 and P2 (Fig. 1) situated on the 
surface of the reference ellipsoid. Additionally let us consider the rectangular Carte-
sian coordinate system with the X axis parallel to the conventional zero meridian of 
Greenwich, the Y axis towards the east, and Z axis parallel to the Earth rotation axis, 
to which the minor axis of reference ellipsoid is also parallel. If mentioned crossing 
plane is normal to the reference ellipsoid in the point P1, then (apart from the special 
cases when point P1 is situated on the Pole or on the Equator) it does not pass 
through the origin of the coordinates system. It crosses Z-axis in the point k whose 
coordinates are described as: (0, 0, zk).  
 

 
Fig. 1. The normal section of the ellipsoid and normal vectors of the main surfaces [own study] 
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Let us present the equation (2) in a different form, aiming to replace of geo-
desic coordinates by Cartesian one. As the coordinate z can be described with the 
equation: 

 )sin(])1([ 2 ϕHeNz +−= , (3) 

where: 
N — radius of curvature in E-W direction; 
H — high of the point abowe ellipsoid. 
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Putting (4) into (2) we receive: 
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so finally equation (2) assumes form:  

 )sin(2'2' ϕHezezk +−= . (7) 

The first element of the sum (7) is a linear function and its value changes 
from 0 to 43 km, while the second one — assuming that value H really occurs at the 
seas (±200m) — changes from 0 to approx. 1,5 m. On this base we will found that 
this is the value so small that we will simplify (7) to the form: 

 zezk
2'−= . (8) 
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AZIMUTH OF NORMAL SECTION OF THE ELLIPSOID 

The azimuth of the normal section of the ellipsoid (Az) is the angle, which is 
measured in the normal plane to the ellipsoid in the point P1 (that is to say in the 
surface of the horizon). This azimuth is laying between the plane of the meridian 
and the plane of the normal section (Fig. 1.). If both surfaces (the normal section and 

the meridian) are described with their normal vectors F  and G , the value of the 
azimuth can be calculated as the angle between these vectors. 

The above-argumentation contains the certain simplifications. In particular we 
should take into account the influence of the height of both points over the ellipsoid on 
the azimuth, because aiming on point P2 usually we make the measurement not in the 
surface of the horizon of the point P1, so not with relation to the direction of the plumb-
line in this point. This causes errors in calculations. In similar way the deviation of the 
plumb-line influences on the results, however it can be skipped. Taking into account 
values of deviations of the plumb-line on oceans and distances from the reference ellip-
soid, we reach a conclusion that this error will not exceed the part of a second.  

In case that the plane of the meridian of the point P1 passes also by the pole 
and the centre of the ellipsoid, this plane is described by following coordinates: 
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If so, the plane of the meridian can be described by following equation: 
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The plane of the normal section will pass by points P1, P2, and k: 
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and we will describe it with the equation (12): 
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We will mark coefficients of equations which describes both planes adequately: 

Fi — coefficients of the equation which describes the surface of the meridian; 
Gi — coefficients of the equation which describes the plane of the normal section; 
i = 1, 2, 3, 4. 

Taking it into account we receive the following formulae: 

 04321 =+++ FzFyFxF , (13) 

where: 
F1 = y1b; 
F2 = –x1b; 
F3 = 0; 
F4 = 0. 
 
By analogy: 

 04321 =+++ GzGyGxG ,  (14) 

where: 
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Using this equations and the general formulae on the angle between vectors 
we will count the value of the azimuth from the following equation: 
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The above expression is indeterminate for x = y = 0, in other words — on 
poles. Then F1 and F2 rise zero, when both the numerator and the denominator (15) 
acquires zero. However then it is clear that the azimuth is 180o or 0o. 

Proposed method is also ineffective, when points P1, P2 and k are lying on 
straight line. Such situation takes place when both start point as well as final point 
are situated on the opposite poles (what was considered above), or when both points 
are on the equator, and their longitudes differ exactly by 180o. In such case the azimuth 
is equal to 270o or 90o.  

Presented method of calculations of the azimuth was verified by the author 
by the comparison with performance of calculations presented in manuals of the 
geodesy. Coordinates of both points and the azimuth as well as the distance taken 
from the books are presented in the table 1. Applied method of calculations is given 
in the third column. In the last column the results of calculations with the new 
method are presented.  
 

Table 1. Comparison of data taken from geodesy handbooks and results  
of azimuth calculation by new method [own study] 

No. Data Method Source Results 
1 B1 = 54o22’17.2318”N 

L1 = 018o46’49.0445”E 
B2 = 62o41’36.8880”N 
L2 = 002o44’58.4200”W 
D = 1 547 246m  
Az = 315o21’24.876” 

 
 

Bessel’s  
formulae 

 
 

Czapczyk, 
Urbański, 1988 

 
 

Az = 315o21’25.9” 

2 B1 = 54o22’17.2318”N 
L1 = 018o46’49.0445”E 
B2 = 57o00’47.6200”N 
L2 = 013o49’19.5766”E 
D = 428 452m 
Az = 315o21’23.8125” 

 
 

Gauss’s  
mid-latitude 

formulae 

 
 

Czapczyk, 
Urbański, 1988 

 
 

Az = 315o21’24.6” 

3 B1 = 53o41’49.6935”N 
L1 = 020o58’49.8323”E 
B2 = 53o24’53.7999”N 
L2 = 021o01’43.2998”E 
D = 31 569.5m 
Az = 174o10’30.0120” 

 
 

Gauss’s  
mid-latitude 

formulae 

 
 

Dyrda, 1984 

 
 

Az = 174o10’30” 
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No. Data Method Source Results 
4 B1 = 49o56’09.3536”N 

L1 = 038o01’02.7546”E 
B2 = 49o46’35.2034”N 
L2 = 037o43’00.3488”E 
D = 27 967m  
Az = 230o44’50.959” 

 
 

Clark’s best 
formulae 

 
 

Hlibowicki, 
1982 

 
 

Az = 230o44’51” 

5 B1 = 54o12’35.0000”N 
L1 = 018o33’15.0000”E 
B2 = 55o05’48.6500”N 
L2 = 018o54’07.5600”E 
D = 101 275m  
Az = 012o40’12.1” 

 
 

Schreiber’s 
formulae 

 
 

Banachowicz, 
Urbański, 1988 

 
 

Az = 012o40’12” 

CONCLUSIONS 

In author’s opinion method proposed here will not replace well-known 
methods when calculations are performed ‘by hand’. However, in case of the com-
puter calculations the Cartesian coordinate system possesses indubitable advantages. 
Many formulas in this coordinate system are simpler, and calculations do not de-
mand usage of trigonometric functions, what consequently shortens the software and 
permits to avoid numeric difficulties. Examples presented in the Tab. 1 shows, that 
only on the distances longer 1 km the differences are bigger that 1”, so from point of 
view of navigator proposed method permits to obtain similar accuracy of calcula-
tions as precise well-known geodesic methods. 
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