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COMPARATIVE EXAMINATIONS
OF THE NONLINEAR KALMAN FILTERS

APPLIED TO POSITIONING SYSTEMS

ABSTRACT

In positioning systems Kalman filters are used for estimation and also for integration of data
from navigation systems and sensors. The Kalman filter (KF) is an optimal linear estimator
when the process noise and the measurement noise can be modeled by white Gaussian noise.
In situations when the problems are nonlinear or the noise that distorts the signals is non-
Gaussian, the Kalman filters provide a solution that may be far from optimal. Nonlinear
problems can be solved with the extended Kalman filter (EKF). This filter is based upon the
principle of linearizing the state transition matrix and the observation matrix with Taylor
series expansions. Unscented Kalman filter with comparison to EKF does not linearize the
model but operates on the statistical parameters of the measurement and state vectors that are
subsequently nonlinearly transformed. The unscented Kalman filter is based on the un-
scented transformation (UT). This paper presents a comparison of the estimation quality for
two nonlinear measurement models of the following Kalman filters: covariance filter (KF),
extended filter (EKF) and unscented filter (UKF). There are descriptions of models and ana-
lysis of obtained results in this article. The comparison of filtration quality was done in
MATLAB environment.

INTRODUCTION

Navigation is a science which deals with estimation of current position of an
object and guidance of mobile objects according to determined route or trajectory.
Navigation for the most part of its history was developed under the influence of
needs in sea navigation. Development of aviation and air force, motor transport,
motorization and individual tourism was the next cause of progress in domain of
navigation. Many manners and navigation techniques were formed within the space
of years. Today Global Navigation Satellite System (GNSS) is the most often used
system for location and determination of position in space. Satellite signals may fade
in heavily urbanized and forested areas or as results of interference and noises.
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Because of this restriction autonomous navigation systems have operated for years.
Only integration of navigation data from those two systems makes possible to realize
precise position estimation.

Kalman filters in many applications are used for navigation and also for
measurement information integration coming from GNSS and from Inertial Naviga-
tion System. The classical Kalman filter is used for linear dynamic systems [1]
moreover extended Kalman filter EKF for nonlinear systems [1], [3] or unscented
Kalman filter UKF [2], [4] – [9]. Unscented Kalman filter with comparison to EKF
does not linearize the model but operates on the statistical parameters of the measure-
ment and state vectors that are subsequently nonlinearly transformed. The unscented
Kalman filter is based on the unscented transform (UT).

Kalman filtration is based on the following models of state and measure-
ment vectors respectively:

( ) ( ) ( ) ( ) ( ) ( )1 ,  ,      for    ~ ,  k k k k k N k+ =       x f x u w w 0 Q ,

( ) ( ) ( ) ( ) ( )1 ,       for    ~ ,  k k k k N k+ =       z h x v v 0 R . (1)

Vector x(k) is n-dimensional state vector in the moment k, z(k) is
p-dimensional measurement vector in the moment k, f(x, u, w) denotes nonlinear
state function describing dynamic behavior of the system between k+1 and k mo-
ments, u is the input system vector, w is the noise state vector, Q is the covariance
matrix of the noise state (denotes uncertainty in the dynamic model during transition
from k+1 to k moments, h(x, v) denotes nonlinear measurement function, v
p-dimensional vector of measurement noise, R is covariance matrix of measurement
errors with dimensions p×p.

A SYSTEM

The system model has assumed as an object in space, moving accordingly to
the Newton equation:

2
0

1
2

x x vt at= + + . (2)

When determining components of position x, we assumed, that our object
moves with constant velocity (acceleration a = 0) and velocity components (v) are
additive Gaussian noise. Fig. 1 presents analyzed model in the graphic form.
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Process model is described by state vector in the following form:

T

x y z x y zp p p v v v =  x , (3)

where: px, y, z are components of the position in Cartesian coordinates, vx, y, z are com-
ponents of the velocity. Speed vector components are Gaussian noise.

State matrix has the form:

3 3 3 3

3 3 3 3

t× ×

× ×

∆ 
=  
 

I I
F

0 I
, (4)

where: t∆  is the time step between moments k and k+1, I is identity matrix.

z 
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(px, py, pz ) 

y
Observer 

Fig. 1. Positioning principle

In this case the state vector (3) and state matrix (4) are identical for covariance
filter (KF), extended filter (EKF) and unscented filter (UKF).

The measured parameters in the measurement model are: r – distance from
object to observer (radar), θ – azimuth, φ – elevation. Thus the measurement vector
is given by:

[ ]Tr θ ϕ=z . (5)

Dependency between object position in the Cartesian coordinates and
measurements in spherical coordinates is described by nonlinear function and it can
be given by the equations:

2 2 2
x y zr p p p= + + , (6)

arctan y

x

p
p

θ
 

=  
 

, (7)
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2 2 2
arccos z

x y z

p
p p p

ϕ  =   + + 

. (8)

The last equation after transformation gives Cartesian object coordinates:

cos sinxp r θ ϕ= , (9)

sin cosyp r θ ϕ= , (10)

coszp r ϕ= . (11)

Measurement matrix for discrete and unscented filters is given by:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 
 =  
  

H . (12)

The vector function h(*) has the following form:

2 2 2

2 2 2

arctan

arccos

x y z

y

x

z

x y z

p p p

p
p

p
p p p

 + +
 
  

=   
  
 

     + +   

h . (13)

In the case of extended filter, linearization of the measurement function h
for each measurement step by the use of partial derivative relatively to all elements
of state vector should be made. The final measurement matrix for extended Kalman
filter is as follows:

( ) 2 2 2 2

2 2

22 2 2 2 2 2

0 0 0

0 0 0 0

0 0 0

yx z

y x
k

z z

y z zx z

z z

pp p
r r r
p p

r p r p

p p r pp p
rr r p r r p

=

 
 
 
 ∂

= =  ∂ − − 
 − − 
 − − 

x x
hH
x

) . (14)
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B SYSTEM

Dynamics in B system is more complex, because the object moves around.
This situation causes nonlinear relationships both in state and measurement matrix.
Figure 2 in detail illustrates considered object.

Fig. 2. Positioning principle

Can see that a nonlinear relation exists between measurements from the
system and elements of the motion:

tan yx

y x

pv
v p

θ = = ,      sinx obv v θ= ,      cosy obv v θ= ,

2 2
ob x yv v v= + ,      2 2

ob x yr p p= + . (15)

Azimuth and angular velocity of the object can be calculated via the following for-
mulas:

( ) ( ) ( )1k k k tθ θ ω+ = + ∆ ,      ( ) ( )
( )

ob

ob

v k
k

r k
ω = . (16)

In the presented system initial values of vector state are described by the
followings:

[ ]T(0) 0 0 0ob ob obr h v=x . (17)
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Nonlinear state functions (in the moment k) are defined as follows:

( )

( )

( )

( ) ( )

( )

( )

( )

1

2

3

4

5

6

cos arctan

sin arctan

sin arctan

cos arctan

y
ob

x

y
ob

x

z z

y
ob

x

y
ob

x

z

p
r k t

p

pf r k t
pf

p k v k tf
k

f p
v k tf p

f p
v k t

p

v k

ω

ω

ω

ω

   
+ ∆   

    


     + ∆          
   + ∆

= =  
     + ∆         

     
+ ∆  

   



f













 
 
 
 
 
 

. (18)

This nonlinear equation requires linearization, which in extended Kalman
filter is performed around the estimated object’s trajectory. For the EKF state matrix
has been calculated as a matrix of derivatives of nonlinear f(*) function with respect
to the components of the state vector x.

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

6 6

x y z x y z

x y z x y z

x y z x y z

x y z x y z

x y z x y z

x y

f f f f f f
p p p v v v
f f f f f f
p p p v v v
f f f f f f
p p p v v v
f f f f f f
p p p v v v
f f f f f f
p p p v v v
f f
p p

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∂

= =
∂ ∂ ∂ ∂ ∂ ∂∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂

fF
x

6 6 6 6

z x y z

f f f f
p v v v

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∂ ∂ ∂
 ∂ ∂ ∂ ∂  

, (19)

where:
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1
3 2

2
2

cos sin
1

yx ob x
ob

x ob ob y
x

x

pp v tpf r
p r r p

p
p

γ γ
 ∆∂

= + + ∂   +     

,

1
3 2

2

1cos sin
1

y ob y
ob

y ob ob y
x

x

p v tpf r
p r r p

p
p

γ γ
∆ ∂

= + − ∂   +     

,

1 0
z

f
p
∂

=
∂

,   1 sinx

x ob

tvf
v v

γ
∆∂

=
∂

,   1 siny

y ob

tvf
v v

γ
∆∂

=
∂

,   1 0
z

f
v
∂

=
∂

,

2
32

2
2

sin cos
1

yx ob x
ob

x ob oby
x

x

pp v tpf r
p r rp

p
p

γ γ
 ∆∂

= − + ∂   +     

,

2
32

2

1sin cos
1

y ob y
ob

y ob oby
x

x

p v tpf r
p r rp

p
p

γ γ
∆ ∂

= + − ∂   +    

,

2 0
z

f
p
∂

=
∂

,   2 cosx

x ob

tvf
v v

γ
∆∂

=
∂

,   2 cosy

y ob

tvf
v v

γ
∆∂

=
∂

,   2 0
z

f
v
∂

=
∂

,

3 0
x

f
p
∂

=
∂

,   3 0
y

f
p
∂

=
∂

,   3 1
z

f
p
∂

=
∂

,   3 0
x

f
v
∂

=
∂

,   3 0
y

f
v
∂

=
∂

,   3

z

f t
v
∂

= ∆
∂

,

4
32

2
2

cos
1

y ob x
ob

x oby
x

x

p v tpf v
p rp

p
p

γ
 ∆∂

= − − ∂   +     

,

4
32

2

1 cos
1

ob y
ob

y oby
x

x

v tpf v
p rp

p
p

γ
∆ ∂

= − ∂   +    

,

4 0
z

f
p
∂

=
∂

,   ( )4 sin cosob ob
x

x ob ob

r v tf v
v r v

γ γ+ ∆∂
=

∂
,

( )4 sin cosob ob
y

y ob ob

r v tf v
v r v

γ γ+ ∆∂
=

∂
,   4 0

z

f
v
∂

=
∂

,
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5
32

2
2

sin
1

y ob x
ob

x oby
x

x

pf v tpv
p rp

p
p

γ
 ∂ ∆

= + ∂   +     

,

5
3 2

2

1 cos
1

ob y
ob

y ob y
x

x

v tpf v
p r p

p
p

γ
∆ ∂

= − ∂   +    

,

5 0
z

f
p
∂

=
∂

,   
( )5 cos sinob ob

x
x ob ob

r v tf v
v r v

γ γ− ∆∂
=

∂
,

( )5 cos sinob ob
y

y ob ob

r v tf v
v r v

γ γ− ∆∂
=

∂
,   5 0

z

f
v
∂

=
∂

,

6 0
x

f
p
∂

=
∂

,   6 0
y

f
p
∂

=
∂

,   6 0
z

f
p
∂

=
∂

,   6 0
x

f
v
∂

=
∂

,   6 0
y

f
v
∂

=
∂

,   6 1
z

f
v
∂

=
∂

,

where: arctan y ob

x ob

p v t
p r

γ
 

= + ∆ 
 

.

For discrete and unscented Kalman filter state matrix has a form given
by (4). An observation matrix H in the measurement model is identical as in the
first model (11).

SIMULATION RESULTS

The accuracy comparisons have been examined by the use of simulation in
the MATLAB environment. In order to ensure the same conditions, research of fil-
ters were realized with identical form of state vector covariance matrix Q, measure-
ment matrix R and initial state vector covariance matrix P(0) in both systems.
Similarly to Julier [3] the following parameters of unscented transform have been
assumed: λ = 3, β = 1, κ = 3.

Furthermore the following values of noise covariance matrix have been
applied:
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2 2 2 2 2 2 2 2 20.0225 0.0225 0.0225 0.49 0.49 0.49 diag m m m m s m s m s− − − =  Q , (20)

covariance matrix of measurement noise:

2 2 20.7225 0.16 0.16 diag m deg deg =  R , (21)

initial covariance matrix of vector state errors:

( ) 2 2 2 2 2 2 2 2 20 1 1 1 1 1 1 diag m m m m s m s m s− − − =  P . (22)

R e s e a r c h  o f  A  S y s t e m

Results are presented it the form of object position in the Cartesian coordi-
nates estimated by the use of covariance filter (DKF – green line), extended filter
(EKF – red line) and unscented filter (UKF – blue line). Real position is denoted by
solid, black line (fig. 3 – 5). The examinations results include values of mean square
error (mse) of estimated state vector:

( ) ( )Tˆ ˆ *KF real real n= − −mse x x x x , (23)

and covariance error P, according to Kalman filtering theory, estimated component
of state vector x (fig. 6 – 8):

( ) ( ) ( ) ( ) ( )Tcov *KF 1k k k k k= + = +P F P F Q . (24)

Fig. 3. Estimated component px of the position Fig. 4. Estimated component py of the position
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Fig. 5. Estimated component pz of the position Fig. 6. Mean square error of the estimated
component px and covariance error Ppx of the position

Fig. 7. Mean square error of the estimated
component py and covariance error Ppy of the position

Fig. 8. Mean square error of the estimated
component pz and covariance error Ppz of the position

The estimation of object speed in the Cartesian coordinates (fig. 9 – 11) and
determination of mean square error and covariance error of speed components
(fig. 12 – 14) has also been done.

Fig. 9. Estimated vx speed component Fig. 10. Estimated vy speed component
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Fig. 11. Estimated vz speed component Fig. 12. Mean square error of estimated vx
and covariance error Pvx of speed component

Fig. 13. Mean square error of estimated vy and
covariance error Pvy of speed component

Fig. 14. Mean square error of estimated vz and
covariance error Pvz of speed component

Additionally, estimated distance from object to observer and azimuth and
elevation of the object are presented in fig. 15 – 17.

Fig. 15. Estimated distance from object to observer Fig. 16. Estimated azimuth
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R e s e a r c h  o f  B  S y s t e m
This system was tested in the same conditions as A system. Results are pre-

sented it the form of object position in the Cartesian coordinates estimated by the
use of covariance filter DKF, extended filter EKF and unscented filter UKF (fig. 18 –
20). The examinations results include values of mean square error of estimated state
vector and covariance error estimated components of the position (fig. 21 – 23).

Fig. 18. Estimated component px of the position Fig. 19. Estimated component py of the position

Fig. 17. Estimated elevation

Fig. 20. Estimated component pz of the position Fig. 21. Mean square error of the estimated
component px and covariance error Ppx of the position



COMPARATIVE EXAMINATIONS OF THE NONLINEAR KALMAN FILTERS...

11/2006 59

Fig. 22. Mean square error of the estimated
component py and covariance error Ppy of the position

Fig. 23. Mean square error of the estimated
component pz and covariance error Ppz of the position

The estimation of object speed in the Cartesian coordinates (fig. 24 – 26)
and determination of mean square error and covariance error of speed components
(fig. 27 – 29) has also been done.

Fig. 24. Estimated vx speed component Fig. 25. Estimated vy speed component

Fig. 26. Estimated vz speed component Fig. 27. Mean square error of estimated vx
and covariance error Pvx of speed component
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Fig. 28. Mean square error of estimated vy
and covariance error Pvy of speed component

Fig. 29. Mean square error of estimated vz and
covariance error Pvz of speed component

Additionally, estimated distance from object to observer, azimuth and ele-
vation of the object are presented in fig. 30 – 32.

Fig. 30. Estimated distance from object to observer Fig. 31. Estimated azimuth

Fig. 32. Estimated elevation
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For nonlinear measurement model extended and unscented filters estimate
the object position nearly identically. Discrete Kalman filter is becoming non-
optimal filter in the sense of minimizing the mean square error. When the mean
square error is included within the area determined by the covariance error of the
estimated vector state then filter is performing correctly. Last principle is satisfied
for extended and unscented Kalman filters but not for DKF. During speed estimation
one can see, that difference between extended and unscented filters is minimal.
UKF gives smaller errors what results from nature of speed components, which are
width-band Gaussian process. The bigger are the jumps of noise values the worse of
extended Kalman filter performance is.

CONCLUSIONS

Results of estimation using Discrete and Extended and Unscented Kalman
Filter for A and B system show that Unscented Kalman Filter operating as algorithm
of data processing in system with nonlinear dynamics guarantees the best quality.
Furthermore:

− any nonlinear transform makes Discrete Kalman Filter to stop being optimal in
sense of minimum mean square error;

− stability loss in EKF is possible for long measurement steps;
− decrease of measurement steps enlarges computational costs as a result of com-

plicated calculations of Jacobians;
− UKF algorithm does not require to calculate Jacobians and it simplifies its com-

plexity;
− the Unscented Kalman Filter provides effective estimation in case of strongly

nonlinear models.
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