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NEW APPROACH TOWARDS POSITION FIXING 

ABSTRACT  

Navigation aids indications, measured distances and bearings are random values governed by 
various distributions, normal characteristic is widely assumed. Navigation handbooks read that 
mean error of bearing taken with radar is within a given range, distance error is within certain 
percentage of an obtained value. It is also known that measurements taken to different land-
marks can be subjectively evaluated therefore diversified. All the mentioned factors are to be 
taken into account once vessel position is being fixed. In order to include them into a calculation 
scheme one has to engage new ideas and use different approaches. Mathematical Theory of Evi-
dence extended for fuzzy environment proved to be universal platform for wide variety of new 
solutions in navigation. 
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INTRODUCTION 

Figure 1 shows traditional way of position fixing with three distances. Three 
circles intersect at three points in the vicinity of the actual ship position. Assuming 
measured distances as random variables, the true position is somewhere inside obtained 
triangle. It is up to navigator’s knowledge and experience to estimate the fix. The more 
accurate the measured distances, the smaller is the triangle and thus the better is the es-
timation of the fixed position. Obviously an experienced navigator is able to assess 
acceptable dimensions of such a triangle. Intersection area, greater than an average, 
results in rejection of the fix. The most common approach to analytical way of position 
fixing exploits the least square adjustment method. One has to find a point for which 

expression ∑ Δ
k

kkw 2*  reaches its minimum. Sum of weighted squared deflections Δk 

from the measured values is calculated. Weights wk introduce credibility masses 
attributed to each of the distances. Traditional way of position fixing engages: 
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⎯ available indications; 
⎯ characteristics of the measured values and type of distribution are not important, 

although normal distribution is widely assumed and exploited in the least square 
adjustment method; 

⎯ subjectively evaluated masses of credibility attributed to each of measurements 
included in analytical approach. 

 

 
Fig. 1. Position fixing with three distances 

 
The main disadvantage of traditional approach is the lack of inherited evaluation 

method of the obtained fix. The solution proposed herein is based on Mathematical 
Theory of Evidence (MTE) extended to fuzzy environment [8] is more flexible as  
it enables considering of the following: 

⎯ available indications; 
⎯ various characteristics of the measured values; kind of distribution is important and 

may affect final solution; empirical and theoretical distribution can be considered; 
⎯ accuracy of measured distances, including ability of engaged aids, distances’ 

lengths and characteristic of the reference object; 
⎯ imprecision in accuracy estimation1; 
⎯ subjectively evaluated masses of credibility attributed to each of measurement; 
⎯ inconsistencies of the computation process; 
⎯ fix adjustment in case of abnormal high inconsistency; 
⎯ evaluation of selected position quality; plausibility, belief and inconsistency values 

enable direct assessment of the fix. 
                                                 

1 In navigation handbooks one can read that mean error attributed to measuring with par-
ticular aid is x, but reaching y (y>x) value is also possible. 

Δ1 

Δ2 

Δ3 
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In his previous papers [2, 3, 4] the author presented concept of engaging MTE 
extended for fuzzy environment to position fixing computation scheme. The Theory 
appeared to be flexible enough to be used for reasoning on the fix, provided various 
systems indications are available. Contrary to the traditional approach, it enables 
embracing knowledge and uncertainty into calculations. Knowledge regarding position 
fixing includes: characteristics of random distributions of measuring values as well 
as ambiguity and imprecision in obtained parameters of such distributions. Uncertainty 
can be expressed by subjectively evaluated masses of confidence attributed to each 
of observations.  

MTE exploits: belief and plausibility measures, events, masses of evidence and 
belief structures. Latter used in navigation consist of fuzzy location vectors, which 
are specific events, and masses of evidence assigned to each of the vectors. Structures 
are to be upgraded related to each indicated position, measured distance and/or bearing. 

POSITION FIXING AND MATHEMATICAL THEORY OF EVIDENCE 

In order to make a fix using MTE one has to explore intersection area of a dis-
tances and/or bearings. Search space grid is used for exploration. Example of crossing 
area of a distance and two bearings with search space grid is shown in figure 2.  
 

 
Fig. 2. Intersection area of a distance and two bearings with search space grid 

 
Centers of search grid cells, marked with +, are to be located with respect to each 

measured values. In the vicinity of each measurement several ranges are established. 
Probability of the true distance or bearing within each range depends on distribution 
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of indicated value. Assuming normal distribution, the probability can be calculated 
for standard deviation (σd) intervals selected at both sides of the obtained measure. 
Three ranges at each side can be established. Ranges marked with a, b, c are situated 
at the right side and a’, b’, c’ at the left side of the indicated value (see figure 3). 
Probabilities of the true distance or bearing within the ranges are equal to: 0.34, 0.14 
and 0.02 respectively. Probability that the true value is situated outside the third 
range is very close to zero. It should be also noted that distinguishing adjacent 
ranges a and a’ is not very important. Furthermore, both ranges will be considered 
jointly as a single range with occurrence probability of 0.68. 

As it was already mentioned, assuming standard deviation as a precise value is 
not justified. On the contrary, it is widely described as imprecise interval value [σ¯

d, σ+
d]. 

In recent book [5] one can read that mean error of distance measured with radar 
variable range marker is within the range of ±1% to ±1.5%, and, for bearings, between 
±1° and ±2.5°, provided medium class modern radar was used. Therefore, interval 
valued transition zones between proposed ranges are to be introduced. Width of the 
distance zone between ranges a and b is an interval [d¯

g, d+
g] = [d+0.01d, d+0.015d] 

and respective interval valued gap for bearings is [α¯
g, α+

g] = [α+1, α+2.5]. Figure 3 
presents separation zones as widening intervals. Their respective limits can be calcu-
lated as: [d+nσ¯

d, d+nσ+
d] for n = 1, 2 and 3.  

 

range c 

d
d –

g distance 

possibility

membership function for range a (a’ and a) 
membership functions for ranges b’ and b 

range a 

range b 

membership functions for ranges c’ and c 

1

d-2σd

range a’ 

range b’ 

range c’ 

d+
g

d+3σd

 
Fig. 3. Selected ranges in the vicinity of measured distance,  

their imprecise limits and membership functions 
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Any search space point may partially belong to a few ranges. In particular, 
point in the centre of a zone should be located with the same possibility of 0.5 within 
left and right range. In order to calculate locations within selected ranges a family of 
sigmoid membership functions is adopted [6]. The latter are diagrammed in figure 3 
each of them consists of two parts. The left hand side sigmoid function is defined by 
formula 1 and the right by formula 2. Their intersection points are located at distances 
of: –2.5σd, –1.5σd, 0, 1.5σd and 2.5σd from measured value. Ni-values and way of 
calculation of ci factor for ranges numbered from –3 (c’) to 3 (c) are presented in 
table 1. Constant C was assumed to be equal to 0.05. 

 ( )iiS Nxc
L

e
)x( −⋅−+
=

1
1μ ; (1) 

 ( )iiS Nxc
R

e
)x( −⋅−+

−=
1

11μ . (2) 

Table 1. Ni-values and way of calculation of ci factors for selected ranges 

c’ left border N-3 = d-3σi c-3: )3( +⋅− i
L
S d σμ = C c’ right border N-2 = d-2σi c-2 

b’ left border N-2 = d-2σi c-2: )2( +⋅− i
L
S d σμ = C b’ right border N-1 = d-σi c-1 

a’ left border N-1 = d-σi c-1: )( +− i
L
S d σμ = C a’ right border 0 - 

a right border N1 = d+σi c1: )( ++ i
R
S d σμ = C a left border 0 - 

b right border N2 = d+2σi c2: )2( +⋅+ i
R
S d σμ = C b left border N1 = d+σi c1 

c right border N3 = d+3σi c3: )3( +⋅+ i
R
S d σμ = C c left border N2 = d+2σi c2 

considered system is symmetric; therefore: ci= c-i 
 

For example, in order to calculate membership within range b one has to use 
expression (3), which selects smaller value returned by left and right hand border 
functions related to this area. Figure 4 shows this function for σd = 1 and transition 
zones within ±20% deviation from mean error 

 ( ) ( ) ⎟⎠
⎞

⎜
⎝
⎛

+
−

+
= −−⋅−−−⋅− dd *dxcdxc

b
S e

,
e

min)x( σσμ 221 1
11

1
1 . (3) 

Example set of relative distances and their fuzzy locations in selected ranges 
are presented in table 2. Calculations are carried out with presented membership 
functions for which ci takes following values: 14.5, 7.2 and 4.8. 
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Fig. 4. Membership function for range b 

Table 2. Example set of relative distances and their fuzzy location in selected ranges 

 distances from measurement 
range –2.20 –0.80 –0.20 0.30 0.85 2.20 

c’ 0.81 0.00 0.00 0.00 0.00 0.00 
b’ 0.19 0.05 0.00 0.00 0.00 0.00 
a’ 0.00 0.95 1.00 0.00 0.00 0.00 
a 0.00 0.00 0.00 1.00 0.90 0.00 
b 0.00 0.00 0.00 0.00 0.10 0.19 
c 0.00 0.00 0.00 0.00 0.00 0.81 

 
Table 3 presents fuzzy locations for the scheme shown in figure 2. Each of 

the grid cells centres is situated with reference to observed distance and bearings. 
Location factors are obtained using membership functions presented above. Nine 
search space points from figure 2 are located as described in table 3. 

 
Table 3. Locations of the search space points regarding distance and bearings 

reference to distance reference to bearing 1 reference to bearing 2 
point location  

(evidence) 
mass  

of evidence 
location  

(evidence) 
mass  

of evidence 
location  

(evidence) 
mass  

of evidence 
1 0.6/b’, 0.4/a’ 0.08, 0.14 0 0 0.5/a, 0.5/b 0.17, 0.07 
2 0.1/b, 0.9/c 0.13, 0 0.2/c’ 0 0 0 
3 0 0 1/a 0.34 0 0 
4 0.3/c’ 0.006 0 0 0.7/c’, 0.3/b’ 0.01, 0.04 
5 1/a’ 0.34 1/a 0.34 0.3/a, 0.7b 0.24, 0.10 
6 0 0 0 0 0 0 
7 0 0 1/a 0.34 0 0 
8 0.9/b’, 0.1/c’  0.02, 0.01 0 0 0.9/c’ 0.02 
9 1/c 0.02 0 0 0.8/b, 0.2/c 0.11, 0.004 

σd 

d+

C
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Point number 1 location with respect to the distance is encoded as: 0.6/b’, 
0.4/a’, what means that particular point is situated within range b’ with possibility of 0.6 
and inside range a’ with possibility level of 0.4. It reflects the term “fuzzy location”, 
which says that any point may belong, to some extent, to any of the ranges. In case 
of a point located outside left border of range c’ or right limit of c null value is used. 
Since probability that the true distance or bearing is that far away from the measured 
one is very close to zero, respective locations do not affect final solution. 

Table 3 also contains calculated masses of evidence related to particular loca-
tions. Their values are obtained as a product of probability assigned to given range 
and level of membership within this range. For example location described by 0.6/b’ 
has assigned mass of 0.14×0.6 ≈ 0.08. 

 
Table 4. Three belief structures for position fixing 

 1 2 3 4 5 6 7 8 9 m(..) 
μ1a {0.4 0 0 0 1 0 0 0 0} 0.408 
μ1b’ {0.6 0 0 0 0 0 0 0.9 0} 0.084 
μ1b {0 0.1 0 0 0 0 0 0 0} 0.084 
μ1c’ {0 0 0 0.3 0 0 0 0.1 0} 0.012 
μ1c {0 0.9 0 0 0 0 0 0 1} 0.012 

di
st

an
ce

  

μ1n {1 1 1 1 1 1 1 1 1} 0.40 
μ2a {0 0 1 0 1 0 1 0 0} 0.544 
μ2b’ {0 0 0 0 0 0 0 0 0} 0.112 
μ2b {0 0 0 0 0 0 0 0 0} 0.112 
μ2c’ {0 0.2 0 0 0 0 0 0 0} 0.016 
μ2c {0 0 0 0 0 0 0 0 0} 0.016 be

ar
in

g 
1 

μ2n {1 1 1 1 1 1 1 1 1} 0.20 
μ3a {0.5 0 0 0 0.3 0 0 0 0} 0.476 
μ3b’ {0 0 0 0.3 0 0 0 0 0} 0.098 
μ3b {0.5 0 0 0 0.7 0 0 0 0.8} 0.098 
μ3c’ {0 0 0 0.7 0 0 0 0.9 0} 0.014 
μ3c {0 0 0 0 0 0 0 0 0.2} 0.014 be

ar
in

g 
2 

μ3n {1 1 1 1 1 1 1 1 1} 0.30 
 
Facts and knowledge regarding measured value enable creating belief structures. 

The latter is an assignment of masses of evidence to location vectors ( ]1,0[2:m →Ω
), 

for which mass assigned to an empty set is zero and sum of all masses is one (m(∅) = 0, 
1)(

2
=∑

Ω⊂A
Am ). Assignments for which above constraints are not observed are 

pseudo belief structures and should be converted to their normal form [7]. 
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Table 4 shows three belief structures related to position fixing with distance 
and two bearings. Encoded locations gathered in table 3 are major parts of these 
structures. Encoded facts are location vectors; their elements are degrees of search 
space points belonging to selected ranges with respect to each of the measured values. 
Since a ranges are treated jointly five location vectors are within single belief structure, 
each related to particular range. 

Location vectors are supplemented with all one set, which expresses uncertainty. 
Mass attributed to this vector shows lack of confidence to a particular measurement. 
Thanks to this value all observations can be differentiated, possibly in subjective 
manner. All location vectors have assigned mass of confidence. Values are calculated 
based on probability attributed to particular range and on complement of uncertainty. 
Initial probabilities are multiplied by factors 1-m(μin). It should be noted that the sum 
of all masses within a single belief structure is to be equal to one. 

Belief structures are subject of combination in order to obtain knowledge base 
enabling reasoning on the position of the ship. It is known that combination of belief 
structures increase their initial informative context. By taking several distances and/or 
bearings a navigator is supposed to be confident on true location of the ship. 

COMBINING LOCATIONS VECTORS AND REASONING ON THE FIX 

Combination table can be used to carry out association of two belief structures. 
Example of combination is presented in table 5. The table contains columns that 
include data from one of involved structure and rows with other sets of data. Each cell in 
the table contains product of engaged masses as well as indication of combined set.  

 
Table 5. Combination of two belief structures related to measured distance and bearing 

  distance  
  m(μ1a)=0.408 m(μ1b’)=0.084 m(μ1b) =0.084 m(μ1c’)=0.012 m(μ1c=0.012) m(μ1u)=0.4 

m(μ2a) 
0.544 

m1-2(μ1a∧μ2a) 
= 0.222  

m1-2(μ1b’∧μ2a)
= 0.046 

m1-2(μ1b∧μ2a)
= 0.046 

m1-2(μ1c’∧μ2a)
= 0.007 

m1-2(μ1c∧μ2a) 
= 0.007 

m1-2(μ2a) 
= 0.218 

m(μ2b’) 
0.112 

m1-2(μ1a∧μ2b’)= 
0.046 

m1-2(μ1b’∧μ2b’)
= 0.009 

m1-2(μ1b∧μ2b’)
= 0.046 

m1-2(μ1c’∧μ2b’)
= 0.001 

m1-2(μ1c∧μ2b’) 
= 0.001 

m1-2(μ2b’) 
= 0.045 

m(μ2b) 
0.112 

m1-2(μ1a∧μ2b)= 
0.046 

m1-2(μ1b’∧μ2b)
= 0.009 

m1-2(μ1b∧μ2b)
= 0.046 

m1-2(μ1c’∧μ2b)
= 0.001 

m1-2(μ1c∧μ2b) 
= 0.001 

m1-2(μ2b) 
= 0.045 

m(μ2c’) 
0.016 

m1-2(μ1a∧μ2c’)= 
0,007 

m1-2(μ1b’∧μ2c’)
= 0.001 

m1-2(μ1b∧μ2c’)
= 0.001 

m1-2(μ1c’∧μ2c’)
= 0.000 

m1-2(μ1c∧μ2c’) 
= 0.000 

m1-2(μ2c’) 
= 0.006 

m(μ2c) 
0.016 

m1-2(μ1a∧μ2c)= 
0,007 

m1-2(μ1b’∧μ2c)
= 0.001 

m1-2(μ1b∧μ2c)
= 0.001 

m1-2(μ1c’∧μ2c)
= 0.000 

m1-2(μ1c∧μ2c) 
= 0.000 

m1-2(μ2c) 
= 0.006 

be
ar

in
g 

1 

m(μ2u) 
0.20 

m(μ1a)= 
0.082 

m1-2(μ1b’) 
= 0.017 

m1-2(μ1b) 
= 0.017 

m1-2(μ1c’) 
= 0.002 

m1-2(μ1c) 
= 0.002 

m1-2(μ2u) 
= 0.080 
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The result of combination contains initial locations vectors, placed in last 
row and last column since: uixix μμμ ∧= . They receive modified masses as a result 
of association. Single step of combination reduces masses of initial locations vectors 
by the amount of uncertainty attributed to another measured distance or bearing. In 
case of multiple structures next steps are to be made, results of previous combination 
are associated with next structure until all items are exhausted. 

Pseudo belief structures can be created as a result of association. The phe-
nomenon occurs when non-zero mass is assigned to an empty or subnormal set. All 
null location vector result from combining ranges with empty intersection within the 
search area. It results from lack of support for given set of positions of the search space 
elements within another set of locations. Pseudo structures have some undesirable 
properties [7]. For this reason pseudo belief structure are to be converted to normal 
state, they are to be normalized. Two different approaches to the normalization 
process are used. Despite a few drawbacks, method known as Yager normalization 
can be used for nautical applications [3]. In the approach all grades of subnormal sets 
are increased by a complement of the highest one. At the same time masses assigned 
to the null sets, the occurrence is also called as inconsistency, increase uncertainty. 

Combination of evidence encoded in two location vectors yields a new set )( ik xμ  
with mass equal to the product of masses involved ))(( ik xm μ . Therefore final belief 
structure consists of family of fuzzy locations sets { )( ik xμ } and collection of masses 
assigned to each of the sets { ))(( ik xm μ }. Given these data sets support for hypothesis 
represented by a set of )( iA xμ  is sought. It is fundamental ability of MTE to reason 
on certain hypothesis based on relative ones. One can reason on true distance or ship 
position given measured values and knowledge on used aids and observed objects. 
Formula (4) defines support plausibility for proposition described by )( iA xμ , which 
is embedded in collection of sets { )( ik xμ } = {μ1x∧μ2x∧ …∧ μnx }: x∈{a, b, b’, c, c’} [1]. 

 ))()((max))(())((
1

ikiA
x

n

k
ikiA xxxmxpl

i

μμμμ ∧=
Ω∈=

∑  (4) 

In position fixing distances and/or bearings to the observed objects, from 
each search space element, are examined. Search space point with highest plausibility 
is assumed to be position of the ship. Set that represent hypothesis on, for example, 
point number 2 as being the ship position is: )( 2xAμ  = {0 1 0 0 0 0 0 0 0 0 0 0}. 
Value of 1 appears at position indicated by point of interest number. Specificity of 
the reference set enable reducing formula (4) to simpler version (5) referring to l-th 
point from the search space: 
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 )(*))(()(
1

lk
n

k
ikl xxmxpl μμ∑

=
=  (5) 

Formula (5) defines support plausibility for certain hypothesis embraced in 
given family of sets. It is quite often that belief of such hypothesis is also sought. 
Formula (6) expresses general case support belief: 

 ))()((min))(())((
1

ikiAx

n

k
ikiA xxxmxbel

i

μμμμ ¬∨=
Ω∈=

∑ . (6) 

Reduced version due to special kind of the reference fuzzy set is defined by 
formula (7). To calculate belief value one has to find minimum among comple-
mented grades (¬) of given set, number of interest is to be omitted: 

 ))((min))(()(
;1

iklix

n

k
ikl xxmxbel

i

μμ ¬=
≠Ω∈=

∑ . (7) 

It should be noted that multiple point presence within given range causes 
that belief for each of them is zero. For this reason belief cannot be considered as 
primary factor in considered position fixing problem [3].  

 
Table 6. Obtained plausibility and belief values 

ssp 1 2 3 4 5 6 7 8 9 
pl(..) 0.23 0.07 0.24 0.08 0.91 0.06 0.23 0.09 0.10 
bel(..) 0.04 0.00 0.01 0.00 0.56 0.00 0.00 0.01 0.01 
ssp stands for search space point number. 

 
Table 6 contains calculated support plausibility and belief for each cells centre 

as fixed position. Support is sought in combination result family of sets. Highest 
values are related with point 5, which is assumed to represent the ship position. Note 
that support for this point as indicating fixed position of the ship is considerably 
high. Closer look at figure 2 proves the proposition. Point 5 is located at intersection 
of two a ranges related to distance and one of bearings, additionally it is located very 
close to the same range with respect to the second bearing. 

Obtained sum of uncertainty and inconsistency was about 0.5. Following 
Yager normalization concept these two values can be considered jointly. It is worth 
to emphasis that in presented example final uncertainty is equal to: 0.4×0.2×0.3=0.024. 
Balance of the final value is due to empty sets that occurred during association. High 
inconsistency value compared to uncertainty indicates abnormality which can result from: 

⎯ larger than expected measurement errors; 
⎯ wrongly adjusted size and position of search space grid. 
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To reduce abnormality caused by size and position of the grid iterative al-
gorithm was implemented. Size of the grid and its location are adjusted during 
iterations. Dimensions of the search area are decreased and its position randomly 
shifted around point with the highest metric. In order to reduce effects of large 
measurement errors standard deviations are proportionally increased, figure 5 shows 
results of this idea. 

SUMMARY AND CONCLUSIONS 

New method of position fixing in terrestrial navigation is proposed. The 
method uses MTE concept, which enables reasoning on position fixing based on 
measured distances and/or bearings. It was assumed that measured values are ran-
dom ones with normal distribution. Knowledge on used aids and observed objects is 
included into combination scheme. The true distance or bearing is somewhere in the 
vicinity of the measured one. To define true distance location probabilities six 
ranges were introduced. Probability levels assigned to each range are calculated 
based on features of normal distribution. Standard deviation of the distribution is 
assumed to be within known range. Imprecise interval valued limits of ranges are 
adopted. Sigmoid membership function are introduced and used for establishing 
points of interest levels of locations within established ranges. Calculated locations 
are elements of fuzzy sets called location vectors. Vectors supplemented with the one 
expressing uncertainty compose one part of belief structure. Another part embraces 
masses of initial believes assigned to location vectors and uncertainty. 

Complete belief structure is related to each of measured value. Mass assigned 
to uncertainty expresses subjective assessment of measuring conditions. One has to 
take into account: radar echo signature, height of objects, visibility and so on to include 
measurement evaluation. Fuzzy values such as poor, medium or good can be used 
instead of crisp figures. Imprecise masses values engage different way of calculation 
and will be discussed in a future paper. 

Belief structures are combined. During association process search space 
points within common intersection region are selected. Result of association is to be 
explored for reasoning on the fix. All associated items are to be taken into account in 
order to select final solution. Two formulas enabling calculation of credibility and 
plausibility of propositions represented by fuzzy sets are available. The formulas 
were simplified due to unique property of the reference set. 



WŁODZIMIERZ FILIPOWICZ 

52 ANNUAL OF NAVIGATION 

 

Fig. 5. Two versions of position fixing with three distances  
and different characteristics of accuracy 

 
In case of high mass of inconsistency position adjustment is necessary. Figure 5 

presents output of an application implementing combination scheme. Position fixings 
with three distances are shown for two different input data sets. Distances were 
treated as random values with normal distributions. Each of them is shown as three 
rings with radiuses equal respectively to: d¯

i= di – 3σdi, di, d+
i= di + 3σdi. Figure also 

emphasis iterative concept of the algorithm. In consecutive iteration search area is 
reduced for the sake of obtaining required accuracy. Credibility attributed to each of the 
measured distances is such that least mass is assigned to the third value. Therefore at 
the left side of the figure point at the intersection of the best distances (1 & 2) is 
selected as final solution. For this case sum of uncertainty and inconsistency is equal 
to 0.39. The high value results from lack of overlapping of selected ranges. Overlapping 
degrees of the ranges can be increased by their widths adjustment. Effect of double 
increment of initial standard deviations is presented at the right side of the figure 5. 
Final uncertainty is significantly reduced and selected position shifted to the centre 
of three circles intersection area. 

REFERENCES 

[1] Denoeux T., Modelling vague beliefs using fuzzy valued belief structures, 
Fuzzy Sets and Systems, 2000, Vol. 116, pp. 167–199. 

[2] Filipowicz W., Belief Structures and Their Application in Navigation (in Polish), 
Methods of Applied Informatics, 2009, Vol. 3, pp. 53–83. 

d1

d2 

d3

d1 d2

d3 



NEW APPROACH TOWARDS POSITION FIXING 

16/2010 53 

[3] Filipowicz W., Mathematical Theory of Evidence and its Application in 
Navigation (in Polish), Knowledge Engineering and Expert Systems, 2009, 
pp. 599–614.  

[4] Filipowicz W., An Application of Mathematical Theory of Evidence In Navi-
gation, ed. A. Weintrit, Marine Navigation and Safety of Sea Transportation, 
2009, pp. 523–531.  

[5] Jurdziński M., Foundations of Marine Navigation (in Polish), Gdynia Maritime 
University, 2008.  

[6] Piegat A., Fuzzy Modelling and Control (in Polish), EXIT, Warszawa 2003.  

[7] Yager R., On the Normalization of Fuzzy Belief Structure, International Journal 
of Approximate Reasoning, 1996, Vol. 14, pp. 127–153. 

[8] Yen J., Generalizing the Dempster-Shafer theory to fuzzy sets, IEEE Transactions 
on Systems, Man and Cybernetics, 1990, Vol. 20, No 3, pp. 559–570.  

Received September 2010 
Reviewed November 2010 
 
 


