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ABSTRACT – The article presents formulas describing the values 
of average circular error, the average coordinate values and their 
covariance in the function of gradient matrix elements of hyperbolic 
position lines. The classical formulas do not take into account the 
correlation existing between the measurements of navigational parameters, 
and therefore also the correlation existing between position coordinates. 
This is also why they do not fully describe the accuracy of determined 
position coordinates. This is particularly significant in the case of strong 
correlation between coordinates and in cases when we are interested 
in directional error.  

 
INTRODUCTION 

 
In accuracy analysis of position coordinates the average circular error or the 

circular error with 95% probability are usually applied. The classical method of 
deriving formulas to the value of average circular error of position coordinates is 
based on errors of position line vectors [Bowditch, 1995], [Urbański et al., 1976]. 
From the point of view of contemporary navigational technique – automated 
navigational systems and microprocessor systems – this method is ineffective and 
requires additional calculations. It is better to make use of data already existing 
when calculating the position coordinates. This approach has been suggested in the 
present paper. 

This article presents formulas describing the dependence of average circular 
error, average errors of position coordinates and the covariance of coordinates in the 
function of gradient matrix elements of hyperbolic position lines.  
These dependences permit to take into account correlation in the measurement  
of navigational parameters, and thereby also the correlation of coordinate errors  
of position plotted.  
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These formulas can be applied both in the algorithm of integrated navigational 

systems and in predicting the accuracy of navigational position systems applied  
(or designed) and in reproducing all accuracy parameters of position coordinates on 
the basis of archive data (for instance: a full accuracy estimation of earlier 
hydrographic surveys, while analyzing navigational averages etc.). 
 

AVERAGE POSITION CIRCULAR ERROR 
 

Let us start with a general situation, when the hyperbolic system consists of 
four radionavigational stations. This possibility practically exists in LORAN-C, 
Raydist, a variety of BRAS and other short-range hyperbolic systems. This variant is 
illustrated by Fig.1. In this case the hyperbolic gradient matrix of position lines has 
the following form [Banachowicz, Urbański, 1988]: 
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where Ai – the azimuth on the i-th radionavigational station. Taking into 
consideration what follows below, the simple trigonometric identities for the 
difference between the sines and cosines of two angles:  
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we will obtain another form of this matrix: 
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where: 
 Aij – average azimuth between the i-th and the j-th station, 
 ωij – base angle between the i-th and the j-th station  
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In this figure P denotes the observer’s point (the position of the 

radionavigational system’s receiver antenna), and Si – the position of the i-th system 
station. Other designations are the same as in the above formulas.  
 

 

 
 

Fig. 1. Configuration of four radionavigational stations of the hyperbolic system 
 

In accordance with formula (1’), the matrix is transposed in the following form:  
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This is why the matrix of the positional system geometry Γ [Banachowic, 1991] will 
be equal to 
 

Γ = ,   (3) 



=GGT

 
where the particular elements of this matrix are described by the following formulas 
(it is a symmetric matrix, which is why the equation γ12 = γ21 takes place): 
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The average circular error of position coordinates can be defined by the 

following equivalent formula [Banachowicz, 1991], [Banachowicz, 1993]: 
 

1−Γtr∆=M Dσ ,  (4) 
 

where: 
σ∆D – measurement error of distance difference, 
tr – denotes the matrix trace.  
 

In effect, after calculating the matrix reverse to matrix (3) and further 
transformations, we will obtain the final form of the formula for the average position 
circular error 
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Yet, hyperbolic navigational systems usually consist of three radionavigational 
systems (minimal number of position lines – two hyperbolas). This situation is 
pictured on the next figure (Fig.2). In this case, the middle station is common for 
both position lines, which means that the equation j = l takes place. Then, the 
difference between average azimuths is equal to the angle of intersection of the 
position lines, i.e.:  

=θ ,  (6) 

and the base angles will obtain the following indexes (markings) 

12ωω =ij 23 and ωω .   (7) =jk

Finally, we will have the following formula for the average circular error of 
position 

2
232 ω
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which is in accordance with the classic formulas [Banachowicz, 2001], [Urbański et 
al., 1976]. 
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Fig. 2. Configuration of three radionavigational stations of the hyperbolic system 
 
 

AVERAGE ERRORS OF COORDINATES  
AND COVARIANCE BETWEEN COORDINATES 

 
Making use also of the other elements of the system Γ geometry matrix we can 

calculate the average errors of the coordinates being determined and the covariance 
between them, that is all elements of normal distribution of a two-dimensional 
random variable. These characteristics permit a fuller analysis of the position 
coordinates being determined and the estimation of accuracy in a specified direction 
[Banachowicz, 2001]. This is essentially significant when navigating in difficult 
areas, e.g. on fairways, or in the case of determining linear values (distances 
between points are calculated on the basis of coordinates, the isobath direction, the 
course of the fairway edge etc.) 

The particular average errors and covariance are obtained by using the 
definition of the position covariance matrix [Banachowicz, 1991]: 
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Due to the limited size of this paper we present the final formulas right now, 

passing over the algebraic transformations. 
 

a) Average error of geographic latitude determination 
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and for the common middle station 

2
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b)  Average error of geographic longitude determination 
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and for the common middle station 
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c) Covariance between geographic coordinates: 
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and for the common middle station 
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Naturally, calculating the average circular error using dependencies (11) and 
(13) we will also obtain formula (8). But now, additionally taking into consideration 
dependence (15) we can calculate the elements of average error ellipsis, which 
cannot be done when using classical formulas. The elements of average error ellipsis 
are calculated on the basis of average errors of position coordinates and the 
covariance between coordinates using the formulas below [Banachowicz, 1991]. 
These formulas are the solution of the characteristic equation of covariance matrix P.  

The square of the semi-major axis is expressed by the following dependence: 
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While the square of the semi-minor axis is described by the formula: 
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Orientation of the average error ellipsis is defined by the following 
dependence: 
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The centre of error ellipsis is determined by the average values of coordinates 

ϕ  and , while the formulas (10) – (15) describe the other elements of probability 
density function of the two-dimensional random variable.  

λ

 
CONCLUSION 

 

The dependences given above permit a full accuracy estimation of position 
coordinates determined by the hyperbolic position system – the calculation of 
particular coordinates’ errors, their correlation, elements of the average error ellipsis 
and the circular errors. This method can be generalized for any position lines. It can 
also be adapted to calculate and analyze the accuracy of various, unequally precise 
and correlated measurements of navigational parameters. 

It also permits to analyze the accuracy of archival data – the course of the 
voyage, situations of average or previously carried out hydrographic surveys. These 
surveys should be supplemented by a description of the position system 
configuration and the average errors of phase measurements (differences of 
distance). Then, all the accuracy indexes of position coordinates can be reproduced 
at any moment. This provides wide possibilities of using archival surveys to update 
nautical information and to identify objects by comparing their average values of 
position coordinates, and to make a full estimation of accuracy (testing of averages). 
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