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ABSTRACT  

The present survey, as part of larger project, is devoted to properties of pure linear models 

of yaw motion for directionally stable ships, of the first- and second-order, sometimes 

referred to as the Nomoto models. In rather exhaustive way, it exactly compares and 

explains both models in that what is being lost in the zigzag behaviour, if the reduction 

to the simpler, first-order dynamics (K-T model) is attempted with the very famous 

[Nomoto et al., 1957] approximation: T = T1  The latter three time constants of 

the second-order model, more physically sound, are strictly dependent on the hydrody-

namic coefficients of an essential part of the background full-mission manoeuvring model. 

The approximation of real ship behaviour in either of the mentioned linearity orders, and 

the corresponding complex parameters may facilitate designing and evaluating ship 

steering, and identifying some regions of advanced nonlinear models, where linearisation 

is valid. 

As a novel outcome of the conducted investigation, a huge inadequacy of such a first- 

-order model for zigzag simulation is reported. If this procedure is used for determining 

steering quality indices, those would be of course inadequate, and the process of utilizing 

them (e.g. autopilot) inefficient. 
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INTRODUCTION 

The zigzag test is directly or indirectly a benchmark for evaluating ship 

performance. It combines both turning and course-keeping qualities required for 

navigation at open sea, that also essentially contribute to ship manoeuvrability in 
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restricted area. Ships are obliged under IMO (International Maritime Organisa-

tion) to undergo this test and its data are often available onboard, besides various 

model-scale data, in terms of the heading time-history or the overshoot angles. 

Therefore, from the ship manoeuvring simulator developer's viewpoint, the zigzag 

data are extensively used to calibrate and evaluate the simulator mathematical 

models of ship motion. 

For a given real ship, adjusting complex multi-DOF ship hydrodynamic 

models in full-mission manoeuvring simulators is a great challenge and requires 

an exact knowledge of the motion response sensitivity to model parameters. Under 

some assumptions, such models can be reduced to simpler 1-DOF models, more 

or less linear (or nonlinear), that enable rather clear insight into the zigzag per-

formance and the responsible hydrodynamic model parameters. Of course, linear 

dynamic models of ship yaw motion have many applications in other fields, e.g. 

in ship design and steering control. They are recognised for simplicity, analytical 

solution, efficiency and validity under some conditions. However, they possess 

some disadvantages too, that sometimes should be assigned more to a procedure 

of determining its parameters than to the model structure itself. 

[Sutulo, Guedes Soares, 2005], though finally concerned with nonlinear 

extensions of linear models, report on losing too much information if first-order 

linear models are used in zigzag simulation, however, without providing details 

of this statement. [Piegat, 1994] and many others within control engineering area 

consider classical inertial element of first- and second-order, that are really homoge-

nous (left-hand side) parts of ship steering linear ODEs. Problems with specific T3 

constant in the right-hand side control input function of the ship second-order ODE 

are studied mostly deeply by [Norrbin, 1966]. However, none of the listed herein 

and some other authors have not raised the problem of certain inadequacy of the 

model order reduction proposed in [Nomoto et al., 1957]. 

The main objective of this paper is to compare the performance of first- 

and second-order linear models with respect to zigzag manoeuvring test, which 

case is rarely undertaken in literature. 

BASIC FORMULAS 

Let us assume the following standard, linear, fully dimensionless motion 

equations in 2DOFs (drift and yaw) for ship mild manoeuvres under constant 

forward speed: 
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where:  

a1, b1, c1, a2, b2, c2 — constant hydrodynamic coefficients. 

 

All these coefficients (parameters) combine contributions from hull and 

rudder, of course, each one in different way. Besides that, b1 has very important 

component of centrifugal force. The dependent variables  and 'z represent the 

unknown motion parameters, the drift angle and dimensionless yaw velocity, 

respectively, while  denotes the helm angle, i.e. the control input. The inde-

pendent variable s' means dimensionless distance, or time, in that dimensional 

(absolute) distance s, or time t, is related to the movement of one ship length: 
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where:  

L — ship length (between perpendiculars), 

v — ship speed,  

tL — time of travelling ship length (= L/v). 

 

Since the zigzag manoeuvre is focused on getting heading information , 

likewise all nautical manoeuvres, and additionally controlled by heading, we need 

to provide additional kinematical relationships: 

 z
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where:  

z — yaw velocity. 

 

The coupled differential equations (1) can easily be transformed to the 

well-known uncoupled second-order linear equation of yaw motion, of primary 
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interest in the paper, and traditionally referred to as the second-order Nomoto 

model (briefly called hereafter ‘2nd-order model’): 
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where:  

T1, T2, T3 — (dimensionless) time constants,  

K — amplification (gain) constant. 

 

An identical equation, of course, can be constructed for drift angle, where 

K and T3 will only change their definition. For directionally stable ship, in which 

case the model is able to predict, all listed time constants are positive. The ap-

pearance of T3 in (4) is a direct outcome of drift-to-yaw coupling in (1), but 

some of this coupling also exists in other constants. The 2nd-order equation (4) 

is such that we have ‘its symmetry’ against T1 and T2 values. It means, if we 

replace the both time constants each other, the equation is still identical. The 

usual definition (or selection) of T1 and T2 is such, that T1>T2. 

We shall now introduce the first-order Nomoto model of simpler linearity: 

 


K
ds

d
T z

z  '
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 (5) 

for which the following approximation criterion, based on the time delay in heading 

asymptotic response to the step helm, is proposed and validated in the classical 

work of [Nomoto et al., 1957]: 

 321 TTTT  . (6) 

The constant K in (5) is identical to (4). For the purpose of present investi-

gation, equation (5), combined essentially with (6), will be called the ‘1st-order 

model’. The expression (6), expected to provide a good reduction of 2nd- to 1st-order 

dynamics, is widely used and quoted in the literature till the modern times, however, 

without presenting new results on zigzag performance, especially those less 

promising. 
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NUMERICAL STUDY — ASSUMPTIONS 

The following reference values are used in the subsequent numerical 

calculations: 

2nd-order model, see (4): 

 4.8958K ,   10.49091 T ,   0.29812 T ,   0.98323 T ; (7) 

1st-order model, see (5, 6): 

 4.8958K ,   9.8058T . (8) 

The above values are concerned with a small chemical tanker, of ca. 100 m 

in length, based on theoretical (empirical) hydrodynamic coefficients, and cali-

brated next against sea trials. 

A method applied to solve the equations of both linear models is the 

numerical integration of ODE using Euler scheme with the time step s' = 0.002. 

For the 1st-order model (5), the step 0.02 or little more (even as much as 0.1) 

may also be here sufficient to maintain visually identical zigzag results. The 

higher values of time step for both models, however, have not been challenged 

in detail and ultimately decided. The numerical optimisation is not considered  

a priority in the present piece of research. While assuming the relatively very 

low step 0.002, it was just attempted to avoid any potential numerical inaccuracies 

with some calculation conditions. It shall also be mentioned, that for the original 

set of two first-order ODEs (1), the required time step naturally gets closer to the 

value specific for the first-order uncoupled equation (5). 

Although analytical solutions can also be derived for our linear equations, 

consisting of some exponential terms, this is impractical and would require dividing 

the zigzag heading curve and the helm curve into some regions. The resulting 

multiple-nested series of elementary contributions to the response, for a few 

counter-helms, is very long and complicated to study it. The fundamental formu-

las for elementary trapezoidal helm input can be independently derived by the 

reader or found in many references. In the latter case, e.g. [Nomoto et al., 1957], 

[Clarke et al., 1983], they rather refer to zero initial conditions, and are affected 

by some minor errors. 

The helm speed adopted in the calculations, in absolute magnitude, cor-

responds to the SOLAS requirement, that is 2.3/s for one steering gear motor 
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running (of two), and abt. 5/s for two motors in action. In our equations, taking 

into account the possible range of ship length and speed, this dimensional helm 

speed is recalculated according to similarity law, i.e. multiplied by the tL = L/V 

factor, see (2), thus leading to two extreme reference cases of dimensionless 

helm speed: 

 2.3/s and L = 100 m, V = 10 m/s (tL = 10 s), that resolves to d/ds' = 23/L; 

 5/s and L = 300 m, V = 5 m/s (tL = 60 s), that gives round d/ds' = 300/L. 

Hereafter in the paper, whenever we refer to ‘zigzag’, we mean exactly 

its type 10/10, that is constituting a basis of the present investigation. Although 

some results are valid for some other types of zigzag tests, especially more or 

less harder, this rather mild 10/10 version seems mostly suitable from the view-

point of assumed linearity to the dynamic model and great popularity among 

researchers. The latter is connected with huge availability of published theoretical 

or experimental records of zigzag tests, that enables further comparison and study 

of the problem. 

NUMERICAL STUDY — BASIC RESULTS 

Below and in the next chapter are presented the most important properties 

of the both linear models as numerically simulated with the above assumptions. 

In Figure 1, one can notice the claimed divergence of both models and 

the impact of helm speed in the zigzag performance. For legibility, the helm 

curve (dashed line) in Figures 1 and 2 is presented only for the 2nd-order model. 

The 2nd-order (hydrodynamically sound) model provides much lower overshoot 

angles. The trend with the helm speed is similar for the both models, e.g. with 

respect to the overshoot angles that increase roughly by 5 (1st overshoot) and 

10 (2nd overshoot) with the slower helm. Due to larger overshoot angles, also 

the zigzag period is likely increased. Recapitulating, the both models are affected 

by the helm speed in the same way, thus maintaining their initial difference. In other 

words, T3 in the 2nd-order model acts similarly independent of the helm speed. 

The examined range of dimensionless helm speed, where the upper and lower 

values differ as much as more than 10 times, seems extreme yet real. For an 

individual ship (of ‘constant’ length) the range of helm speed will be, of course, 

much lower. In the case of larger and slower ships, with two motors engaged of 
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the steering gear, the helm absolute speed in /s is almost insignificant, if com-

pared to a ship’s movement. Thus, it can be treated more as rapid (step) helm. 

Surprisingly, the both models also respond similarly in this case. 

Although not directly connected with the present paper’s interest, the 

ships with high length-to-speed ratio (L/V), see Figure 1, ‘hydrodynamically’ 

reveal lower overshoot angles. In the IMO requirements, however, higher over-

shoot angles are allowed. As is known, the latter are introduced more from the 

human response point of view than from the hydrodynamic point of view. 

 

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20

2nd-ord.

1st-ord.

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20

 



s'-

 



s'-

HELM 23 /L HELM 300 /L 

 
Fig. 1. Zigzag heading history for 1st and 2nd-order linear models 

 

The same trends, proving the definitive incompatibility of 1st- and 2nd-order 

models in some (maybe, in many) rather usual conditions, while simulating the 

zigzag manoeuvre, can surprisingly be also furnished for the very popular Mariner 

ship studied in [Tzeng, Chen, 1999] and in many other works, that is: 

 
-10.185sK , 118s1 T ,  7.8s2 T , 18.5s3 T ;    107.3sT . (9) 

This has also been checked by this author and can be verified even by 

the reader. The literature has not reported this fact at all so far. Disregarding the 

dimensional definition of (8), that is not important, the mutual configuration of 

values in (8) is similar to (7). It must be stressed, however, that this statement is 

valid for the inextricable approximation criterion given in (6), leading to 

T = 107.3 s with the preserved K value. 

If K and T of a first-order model are ‘globally’ indentified from the zigzag 

curve of 2nd-order model, using e.g. the procedure of [Nomoto, 1960] or the quite 
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different least-square fitting, the agreement between the models would be much 

improved. The K and T values obtained this way would obviously have different 

meaning and violated relevance to the hydrodynamics reflected in (1). To exem-

plify such a new situation, this author has used the famous [Nomoto, 1960] method 

to ‘identify’ K and T from the simulated 2nd-order response in Figure 1 (left — 

23/L). The original values, see (8) [Nomoto et al., 1957], are ca. 4.90 and 9.81 

accordingly. The new values, based on the first half-period (full-period) decrease (!) 

down to K = 1.94 (2.17) and T = 3.09 (3.61), giving 2.06 and 3.35 on average. 

The simulation of the first-order model with the latter, average constants is demon-

strated in Figure 2 (‘1st-ord. NEW’) together with the previous results. 
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Fig. 2. Performance of 1st-order model with K and T as ‘globally’ identified  

 

Figure 3 presents the time history of dimensionless rate of turn (yaw ve-

locity) and its derivative. The cause of different behaviour in zigzag for the both 

models is best depicted in the plot of yaw acceleration (due to differential nature 

and thus sensitiveness of this presentation). Particularly, see the jumps for the 

2nd- order model that are essentially ‘damped’ by the 1st-order model. The 2nd-order 

model gives more rapid response, either to initiate or to check the heading alteration, 

leading to much lower overshoot angles. 

Figure 4 (the helm speed case 23/L only) provides another illustration 

of the divergence of both models, this time in the form of the so-called phase 

diagrams, very useful in studying internal relationships in the model and in the 

identification of its parameters. The 1st-order model presents itself most clearly 

in the lower chart of this figure (yaw acceleration vs. velocity), where it assumes 

an almost perfect inclined rectangular shape. 
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Fig. 3. Dimensionless yaw velocity and acceleration for the case 23 /L  
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Fig. 4. Various phase diagrams for the case 23 /L  
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NUMERICAL STUDY — FURTHER (SENSITIVITY) RESULTS 

In Figure 5 there is displayed a situation, when T3 constant is forced to zero, 

while all other constants in (7) are preserved. The constant T of the 1st-order model 

is updated accordingly to (6). The helm curves in this (and subsequent figures) 

are already omitted. It can now be concluded that the differences in the models 

lie in the second derivative of yaw velocity and are connected with the both time 

constants T1 and T2. The role played by T3 constant, compare Figure 5 to Figure 1, 

is also very crucial. However, unlikely in Figure 1, the helm speed d/ds' in (4) is 

disappearing (due to T3 = 0), but is still used indirectly in the variation of helm 

angle with time under the function  = (s'), leading again to lower overshoot 

angles with faster helm. 

There is no mistake in this Figure 5 — the differences between the both 

models, though less conspicuous, are now inverted, in that a little higher overshoot 

angles are exhibited by the 2nd-order model. T2, roughly equal 0.3, i.e. much 

lower than T1, is yet of significant magnitude as to introduce some differences 

between the both models. 
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Fig. 5. T3 = 0 situation for various helm speed (differences between models are reverted)  

 

Figure 6 shows the effect of rather mild increase of T2, from ~0.3 to 1.0, 

under the previous assumption of T3 = 0 (the case of 23/L only). Compare this 

result with the left diagram of Figure 5. The zigzag performance in the 2nd-order 

model, in contrast to the 1st-order model, is very sensitive to T2. On the other 

extreme, if T2 is reduced up to a very low value, e.g. less than 0.01 (103 times 
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lower than T1), the both models practically coincide with each other, that is not 

shown in the paper. By additional simulations, it is also found out that 2nd-order 

model performance quoted in this paragraph is not bound by T3 = 0, but practi-

cally by the positive difference T2–T3 (T2>T3), that is hardly, however, the case 

in ship hydrodynamics. 
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Fig. 6. T3 = 0 situation for helm 23/L and forcing T21.0  

 

Figure 7 presents the most interesting case, that will receive special at-

tention in next chapters — the zigzag coincidence of the both models for T3 = T2 

(in which case T = T1). Such a behaviour is completely independent of T2 magni-

tude. 
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Fig. 7. T2 = T3 situation for helm 23/L (identical for arbitrary T2)  
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PROOFS OF CONDITIONS (T3 = T2  T = T1) FOR EXACT 2ND-  

TO 1ST-ORDER MODEL CONVERGENCE 

To explain the behaviour found for the 2nd-order model with the forced 

equality T3 =T2, Figure 7, signifying the true reduction of the linearity order up 

to the first order, we may revert to the frequency (spectral) characteristics of the 

second-order system as analytically presented e.g. in [Nomoto et al., 1957, p. 359]. 

Those are defined in terms of amplitude ratio and phase lag of yaw versus har-

monic steering. The response goes simple, being then solely a function of T1, if 

we just insert T3 = T2 into the quoted formulas. The same, but even more ele-

gantly, is reached when we examine the Laplace transform definition of transfer 

function for this system [Nomoto et al., 1957, p. 360, 3rd equation from top]: 
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in that corresponding factors in the numerator and denominator completely cancel 

each other. 

However, either the frequency characteristics (Fourier transform-based) 

or its fully equivalent Laplace transform-defined transfer function describe the sys-

tem response to (steering) input in limited, partial way. Namely, either the steady- 

-state response or zero initial conditions (with regard to yaw velocity and accelera-

tion) are considered accordingly. However, since the zigzag normally starts at zero 

initial conditions, using the transfer function (10) with its underlying assumptions, 

we are able to say that up to the first counter-helm the both 1st- and 2nd-order 

models would identically evolve. This is also clear and trivial when we investigate 

the Laplace transform-defined full response at arbitrary initial conditions, i.e. 

comprising the so-called (transient) memory effect, wherein only T1 and T2 nomi-

nally stand, that is derived in [Nomoto et al., 1957, p. 360, 1st & 2nd equation 

from top]. However, for non-zero initial conditions, as present at the first and 

subsequent counter-helms, the numerically observed reduction of the response to 

the 1st-order (with T1 only) is not obvious within this memory-effect term, where 

we need T2 to disappear. The key to success should lie in deriving and substituting 

zigzag-specific initial conditions to this memory effect, which are functions of 

T1 to T3. It is believed this should be little challenge in the future. 
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Another support is rendered by time-based response for elementary trape-

zoidal steering, which is rather easy for development, even under non-zero initial 

conditions. Under zero initial conditions, we may directly refer to [Clarke et al., 

1983, eq. (12)], that has less minor errors than [Nomoto et al., 1957]. Up to the 

first counter-helm, only the term with T1 is left if we take advantage of T3 = T2. 

The formal analytical proof of the heading behaviour at further advance of time 

will remain unsolved in this paper, expecting no trouble to do it. The full analytical 

proof is much better than numerical (performed in the paper), since among others it 

directly identifies the structure of the analysed system. 

In fact, it is worthwhile to recall (4) under the specific conditions of T3 = T2 

that yields a specific and intriguing equation: 
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that is surprisingly independent of T2, at least for the zigzag test, and actually 

denotes the fully first-order linearity of response as described before. 

Another matter is whether the so-called cancellation effect, studied e.g. 

by [Hwang, 1982], [Holzhuter, 1990], being a correlation between dependent 

variables that impede model identification, also referred to as the ill-posed problem, 

can be linked to the cancellation of T2- and T3-terms in the transfer function (10). 

The answer is obviously true, particularly in view of [Tzeng, Chen, 1999]. How-

ever, it is rarely to note that with T3  T2 we essentially get a first-order linear 

dynamics, that cannot be identified with the specific second-order model of the 

form (4). In other words, this instance of second-order model cannot be naturally 

reduced to or easily ‘encompass’ the first-order dynamics unless some asymptotic 

behaviour is considered. Namely, it inherently possesses hard ‘second-order’ 

properties, which cannot be disregarded. 

It had not been reported in the original work of [Nomoto et al., 1957], by 

far the most informative source, and in later and recent references, how close to 

T2 we should keep T3 to get reasonable ‘identity’ of the both 1st- and 2nd-order 

models in the zigzag simulation. In other words, how the 2nd-order model is 

sensitive on these two time constants, because their order of magnitude vs. T1 is 

not so important, if T3  T2,  as someone may believe. 
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T2 AND T3 EQUALITY IN HYDRODYNAMIC TERMS 

Based on the hydrodynamic coefficients of the background set of linear 

equations (1), T2 and T3 in (4) classically read as follows: 
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Making them equal, one finally gets the hydrodynamic condition of the 

linear dynamics convergence from the 2nd- to 1st-order: 

 









2

1
221

2

1
1

c

c
aba

c

c
b  (14) 

that is essentially based on the ratio c1/c2. This factor is a function of dimension-

less gyration radius of ship, her added mass dimensionless coefficients for sway 

and yaw, and the ‘effective’ (sometimes different than geometrical) rudder loca-

tion. We can next transform this simple (!) equation to get an explicit formula 

for the particular hydrodynamic coefficient, if all the other quantities are known. 

CONCLUSIONS 

In the paper, problems with the first-order approximation applied to the 

background, hydrodynamics-related, second-order linear response in ship yaw 

have been studied and diagnosed. 

Adopting the frequently quoted time constant reduction criterion (6), with 

the preserved gain constant, exactly consists in assuming T2 = T3. This leads to a dras-

tic change of the response in zigzag manoeuvre. The relative magnitudes of three 

time constants in the second-order equation is not so important, as one may expect. 

For many second-order model instances, as published, this approximation is unac-

ceptable, at least as far as we simulate the zigzag test and are interested in its over-

shoot angles and periods. However, the same incompatibility may affect other 

types of steering. 
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If K and T constants for the first-order model are provided, they should 

always be asked for methodology. If they are based on various techniques of model 

fitting to recorded sea trial data, the first-order model can well simulate the zigzag 

manoeuvre, but it certainly loses, confuses or changes the hydrodynamic sense. 

Therefore, such first-order model constants cannot be directly converted to rela-

tionships between the hydrodynamic coefficients in a full-mission model. 

Summarising, it is thus encouraged to start in the future a development 

of procedure to identify the four-parameter second-order model from the zigzag 

test records. 
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STRESZCZENIE 

W artykule przedstawiono analizę krytyczną konsekwencji upraszczania równania liniowego 

Nomoto drugiego rzędu prędkości kątowej statku do postaci pierwszego rzędu z punktu 

widzenia symulacji próby wężowej. Stwierdzono nieadekwatność (niezgodność z pierwot-

nym zachowaniem) zredukowanego modelu przy zastosowaniu klasycznych kryteriów 

[Nomoto et al., 1957].  

Model drugiego rzędu (4-parametrowy) prędkości kątowej bezpośrednio wynika z elemen-

tarnego układu dwóch sprzężonych liniowych równań róźniczkowych prędkości kątowej 

i kąta dryfu — zmiennych opisujących podstawowe ruchy manewrowe statku. Choć 

dziedziczy ścisłe podstawy hydrodynamiczne, model drugiego rzędu jest wciąż trudny 

do identyfikacji w oparciu o proste próby manewrowe, m.in. wspomnianą próbę wężową. 

Tym samym również jego zastosowanie w projektowaniu (manewrowym) statku, okrę-

towych systemów sterowania, np. autopilotów, i w ocenie właściwości manewrowych 

statku jest jak na razie ograniczone. Zupełnie odmiennie przedstawia się sytuacja dla 

modelu pierwszego rzędu (2-parametrowego, tzw. K-T). Model ten jest bardzo popularny  

i łatwo identyfikowalny. Jednakże jeśli parametry modelu pierwszego rzędu zostały wyzna-

czone według próby wężowej, to nie można ich wykorzystać w identyfikacji powyższego 

bazowego układu równań. Z kolei jeśli parametry te zostały określone na podstawie 

parametrów modelu drugiego rzędu (~ współczynników hydrodynamicznych równań) 

przy użyciu krytykowanej metody redukcji, to model pierwszego rzędu nie zapewnia 

adekwatnej symulacji próby wężowej, co ogranicza niektóre jego zastosowania. 
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