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ABSTRACT

The paper presents a method of conversion of the previously published full-mission time-
domain manoeuvring mathematical model to an analytical model under steady turning con-
ditions. The aim is to identify the parts of the model directly responsible for a given shape of
the spiral test curve in case of directionally stable or unstable ships.

INTRODUCTION

The theory of ship course dynamic stability or instability has probably the
longest history and greatest progress of all the topics generally covered by the ship
manoeuvring research and science, and by the ship automatic control science as well
– refer e.g. to [Norrbin, 1960], [Bech, 1972], [Lewis (ed.), 1989]. It is not purposeful
to cite here all relevant publications, the number of which is really huge. The basic
ideas are however the same. The possible approaches or concepts, in form of input
manoeuvring equations or output stability relationships, can be quite different as
dependent upon application goals.

The course stability is usually classified according to a direct (classical,
Dieudonne’s) or reversed (Bech’s) spiral test data – a steady state turning response
in terms of e.g. yaw velocity versus different rudder angles is examined. A valuable
comparison is given e.g. in [Smitt, 1967]. These tests are very famous (and superior
in the mathematical models tuning), although they are not normally included in the
shipyard programme of sea trials, but are sometimes scheduled on free-running scale
physical models during a ship prototype design. The IMO manoeuvring standards,
mostly implemented within the design process (they are considered by ship design-
ers as very weak and thus comfortable), ultimately set a major focus on zigzag data
for some reasons. Nevertheless, it is recommended to execute spiral tests, and record
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as many variables as feasible, for manoeuvring mathematical model identification –
this can prevent to some extent the occurrence of ambiguity and loss of physical
meaning among some model parameters when such an identification (optimisation)
is based on limited sea trials. One of interesting attempts to identify the parameters
of rather simple manoeuvring equations just from spiral test data was provided e.g.
by [Gill, 1976].

In [Artyszuk, 2003a] a practical four-quadrant ship manoeuvring mathe-
matical model was introduced, where hull forces and moment nondimensional coef-
ficients, as well as rudder lift and drag force coefficients, are linearly interpolated in
two dimensions from lookup tables. Also, some course instability of the model was
noticed when the hull-rudder interaction factors (rudder force augmentation and
flow straightening parameters) were manipulated. The theory behind the identifica-
tion of the hull hydrodynamics related lookup tables from sea trials was described in
[Artyszuk, 2003b, 2005a]. Although the lookup tables ensure in general any level of
flexibility to the model structure, due to common finite discretisation steps (e.g. for
the sake of identification feasibility and low model complexity), they impose some
stiffness, which can be advantageous or cause some adverse effects.

It is also rather known (though it may be sometimes not realised at a glance
due to poor popularisation of the ship manoeuvring knowledge) that some steady
state turning parameters (those of relative nature) are independent of the ship initial
approach speed – naturally within a reasonable range of Froude numbers. Under this
behaviour fall almost all merchant ships. A wider explanation of the steady state
turning phenomena was provided in [Artyszuk, 2005b]. Hence some universal ana-
lytical equations can be established that take into account only hull and rudder pa-
rameters.

The present study aims at addressing systematically those parts of the ma-
noeuvring mathematical model, as specified in [Artyszuk, 2003a], which are respon-
sible for a prediction of steady state behaviour in spiral tests. If proper values of
some parameters are set (e.g. by model tests in towing tanks), or at least their possi-
ble range of values, some other parameters can be often uniquely determined. For
this reason, a special analytical model (algebraic equations) is to be derived from the
general time-domain simulation model in concern, which shall support an identifi-
cation of the latter. It describes a plot of nondimensional yaw velocity versus rudder
angle (but for relatively low magnitudes e.g. up to 10 degrees), especially in the case
when a ‘hysteresis’ appears for an unstable ship. Other steady-state parameters, like
e.g. the absolute yaw velocity or drift angle, can be easily deduced from the nondi-
mensional yaw velocity.
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DERIVATION OF ANALYTICAL MODEL

The ship manoeuvring equations in the steady-state conditions (time deriva-
tives are vanishing) are as follows:
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where: m, m11, m22 – ship mass and added masses; cm – empirical factor; vx, vy, ωz –
surge, sway, and yaw velocities; Fx, Fy, Mz – surge, sway forces and yaw moment;
xR – rudder abscissa (negative); H, P, R – subscripts denoting hull, propeller, and
rudder.

The hereafter efforts will concentrate upon the last two equations in (1), na-
mely those controlling the sway force and yaw moment balance. There are three
items that ought to be defined – hull sway force FyH and yaw moment MzH, and rud-
der sway force FyR. Concerning the hull excitations, the four-quadrant expressions
look like:
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where: ρ – water density; L, T – ship length and draft; vxy – total linear velocity;
β – drift angle; Ωm – normalised (modified) nondimensional yaw velocity; cfyHm,
cmzHm – hull hydrodynamic nondimensional coefficients supplied by lookup tables.
The particular motion parameters are represented by:
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where the drift angle β ranges from –180° to +180° (positive for starboard turning),
and the modified nondimensional yaw velocity Ωm from –1 to +1 (positive for star-
board turning).

The two-dimensional interpolating lookup tables, in the single region di-
rectly adjacent to values of input variables, for which the function is evaluated, are
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marked in tab. 1. Moreover, it is assumed that for the most essential inner part of the
spiral test curve this four-value part will remain valid – thus an appropriate discreti-
sation step is here needed.

Table 1. Extract from hull hydrodynamics lookup tables – coefficients cfyHm and cmzHm

Ωm\β β1 β2
Ωm1 z11 z12

Ωm2 z21 z22

A linear interpolation among nodes (values) of the lookup tables involves
the following interpolating formula (note the first nonlinear term associated with
‘a’ parameter):

dcybxaxyz +++= (4)

where the arguments x and y are normalised to the range 1,0 , and the constant co-
efficients are related to the corresponding part of the lookup table according to:
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While interpolating the hull hydrodynamic coefficients, one can read:
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Finally:

'''' dcbaz mm +Ω+β+Ωβ=   where  dd =' (7)

Because the middle range of the lookup tables for hull hydrodynamic coeffi-
cients, i.e. around the origin (zero) of β and Ωm, as of the most interest in the ship
course instability modelling or identification (low drift angles and nondimensional
yaw velocities), contains by nature some zeros, the above relationship (7) is simpli-
fied and marked by:

β+Ωβ= 11 '' bac mfyHm (8)
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mmmzHm cbac Ω+β+Ωβ= 222 ''' (9)

To make the analysis easier and clearer, it is suggested to introduce in (8)
and (9) the standard nondimensional yaw velocity zω  instead of the modified non-
dimensional yaw velocity Ωm:

21 m

m

xy

z
z v

L

Ω−

Ω
=

ω
=ω ,     

21 z

z
m

ω+

ω
=Ω (10)

However, for zω up to 0.5 ( mΩ then equals 0.4472), valid for usual range of
course stability problem, and being also the initial discretisation step of the lookup
table, see later, the following practical equality can be established:

mz Ω≈ω (11)

It implies that the hull excitations can now be rearranged according to:

( ) ( )βωβωβωβωρ 11
22

11
22  1'' 15.0 bavbaLTvF zzxyzzxyyH +





 +=+





 += (12)

( )
( )zzzxy

zzzxyzH

cbav

cbaTvLM

ωβωβω

ωβωβωρ

222
22

222
222

 1                         

''' 15.0

++




 +=

++




 +=

(13)

The rudder lateral force FyR, for small rudder incidence angles and local drift
angles, can be approximately described as follows (refer also to [Artyszuk, 2003a,
2005b]):
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where: AR – rudder area (in case of twin-rudder/twin-screw ships this shall be dou-
bled); w – wake fraction; cTh – thrust loading coefficient (average with regard to the
usual speed loss in the range of small rudder angles); α∂∂ Lc  – lift coefficient gra-
dient corresponding to the aforementioned average cTh (lift linearity assumed, the
gradient relates to the incidence angle α expressed in degrees); aH – rudder force
augmentation empirical factor due to a hull interaction; δ – rudder angle in degrees
(negative for starboard rudder); β – drift angle in degrees; c12 – rudder lateral inflow
empirical factor.
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The centrifugal term and Munk moment in the second (sway) and third
(yaw) equation of (1), respectively, can be rewritten as:
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The most hydrodynamically convenient in the analysis of ship course sta-
bility is a chart of zω versus rudder angle δ though in practical applications and full-
scale measurements the absolute yaw velocity ωz still dominates. Hence a proper
conversion is necessary. Because the ( )δω z  is not a unique function for a direction-
ally unstable ship – for some (rather small) rudder angles δ there are two (direct
spiral test curve) or three (reversed spiral test curve) different values of zω , all of
them indicate the equilibrium of forces in the steady turning conditions – the best
choice is to investigate the inverse relationship ( )zωδ . The latter is definitely
unique.

Combining now both the sway and yaw equations (see also [Artyszuk,
2005b]) by rejecting the rudder sway force FyR, the fundamental hull dependent only
relationship ( )zωβ  is yielded in our new notations:
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Taking into account the sway equation from (1) for example, and discarding
the common terms, the rudder angle as independent variable finally reads:
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where for β the expression (17) shall be substituted. It shall be reminded that equa-
tion (18) is valid for the same range (positive or negative) of the nondimensional
yaw velocity, for which the values of the hull nondimensional coefficients are taken
from the background lookup tables, refer to tab.1 and formulas (8) and (9). The
negative (starboard) rudder has to always follow the positive yaw velocity, and vice
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versa. The solution of (18) is not symmetric, as opposed to what happens in many
spiral tests, though it seems that changing the sign of zω  in (18) would automati-
cally reverse the sign of δ. The latter is not true. The usual central symmetry among
values of the hull lookup tables for positive and negative yaw velocities (accompa-
nying the same sign of the drift angle), does not imply the same signs of all the con-
stants in (8) or (9). Both the terms associated with the product mΩβ  – namely 1'a
and 2'a  – will just assume the opposite values.

GENERAL PROPERTIES OF SPIRAL TEST DATA

Since the subject literature does not provide a lot of complete information
concerning ship turning behaviour in steady state conditions – both motion data and
force components are important for ship design improvement or mathematical model
identification, figures from 1 to 3 are intended to partially fill in these gaps. They are
based on a direct spiral test simulation with two ship manoeuvring mathematical
models – a chemical tanker (with two versions of rudder parameters) and twin-
screw/twin-rudder ferry – refer to [Artyszuk, 2003a] for the model structure (and
model parameters of the first ship).

Both models were more or less accurately optimised (tuned) against avail-
able full-scale trials. Though figs. from 1 to 3 do not present the force information as
well (for a reason of restraining the paper’s volume), both tanker and ferry models
are essentially quite different. Within the rudder angle range up to 10 degrees – the
tanker experiences the rudder yaw moment MzR in the order of 25% of the hull yaw
moment MzH (both are surprisingly negative for starboard turning and vice versa),
while for the ferry the rudder yaw moment is almost zero (the hull yaw moment
itself compensates the Munk moment). It means that for the ferry low sensitivity of
spiral test data prediction upon rudder coefficients shall be experienced. The
sub-charts of figs. 1 – 3 contain in sequence: surge velocity vx, yaw velocity zω ,

nondimensional yaw velocity zω , drift angle β, and thrust loading coefficients cTh.

The plots of zω , zω  or β are similar (correlated) to each other, also any instability
loop occurs in all these three parameters – thus they are nearly equivalent in the
analysis – as stated before the nondimensional yaw velocity zω  is preferred.

For a stable ship, both spiral (direct, classical) and reversed spiral tests pro-
duce the same curve of steady state response, e.g. in terms of zω  – see fig. 4C,
though the reversed type is considered faster but more difficult.
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Fig. 1. Spiral test data for marginally unstable chemical tanker L = 97.4m (‘chem100’) –
simulation with final model [Artyszuk, 2003] – aH = 0.6, c12 = 1.0 (version ‘00n’)
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Fig. 3. Spiral test data for stable 2-screw ferry L = ca.150m (‘ferry150’) –
preliminary simulation with partially tuned model

However, for an unstable ship the situation rapidly changes, refer to fig. 4A
and 4B – the complete curve of steady turning zω , i.e. associated with the equilib-
rium of all involved forces and moments, can be obtained only through the reversed
spiral test. Such a curve is just expressed by (18). The most critical is a piece be-
tween the points D and D’, as crossing the axes origin O, that can not be achieved by
means of a direct spiral procedure – the accessible points in a direct spiral test are
marked by the solid line in fig. 4A. The same points are obviously also acquired in
a reversed spiral test, which is a bit wider and more general test. The points D and
D’ are the extrema of the ( )zωδ  relationship given by (18).
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Fig. 4. Steady turning data and course stability via direct and reversed spiral test
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Normally in practice, both direct and reversed spiral tests start from points
A or A’ (representing the highest rudder angle in concern) and are advanced towards
lower rudder angles. However, this is not necessary to reproduce the whole curve
specific to a particular spiral test. Any point can be chosen on the segment A-D or
A’-D’ as the initial one, and any direction of rudder change is allowed, for example
from A to D or the opposite one. Moreover, if the current point is D and higher port
rudder angles are ordered, then a sudden jump occurs to the second opposite leg of
the spiral test curve – point B’, and vice versa.

Regarding the special region D-O-D’ characteristic for the reversed spiral
test, it shall be noted that a ship has always a tendency to leave this area and assume
a location between points A and D, or A’ and D’ – this fact is rarely known in the
literature. For example, if the turning equilibrium is somewhere between D and O,
and the helm is put amidships, then a ship will enter the point C, unless a special
steering by an experienced helmsman and with an available rate of turn indicator is
performed as demanded in the principles of the reversed spiral test.

The area restricted by points B-C-D-B’-C’-D’-B is usually called a instability
loop (or briefly a hysteresis). The basic parameters are the (nondimensional) yaw
velocity corresponding to points C and C’, and the boundary rudder deflection
arising in points D and D’. For a lot of ships, the spiral test curves are symmetrical
against the origin of coordinates.

DEFINITION OF SPECIFIC POINTS ON SPIRAL TEST CURVE

Limiting our considerations to the positive domain of zω , the spiral test
curve (see fig. 4A,B) intersects the zω  axis in one (O) or two points (O, C) that are
defined by roots of the following equation (refer to (18)):
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The mutual magnitude and sign among particular contributions appearing on
the right side of (21) are very important while checking an existence of roots or
modelling the course instability. For a stable ship all coefficients in (20) from A to F
are negative (the only root is 0=ω z ). Some of them are of course always negative
independent of the level of ship course stability – they result from the common ship
hydrodynamics. On the other hand, the unstable ship will get at least one of the
above six polynomial coefficients as positive. The most efficient way of finding or
testing a root in (20) under known coefficients is however a numerical solution.

The equilibrium condition for maximum positive (port) rudder angle (point
D) is governed by:

( ) 0=ωδ′ z (22)

where (see eq. (20))
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One of the additional parameters of the spiral test curve, fig. 4A or B, is its
slope at the axes origin represented by the derivative (23) at 0=ω z . In general, it
reads:
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where the numerator F in the last fraction is given by (21). The course dynamic in-
stability occurs when ( )0δ′ is positive – the same signs of yaw velocity and rudder
angle occur. The denominator of the last fraction is always negative, therefore the
sign of ( )0δ′  is defined by the sign of F – a positive F value is required for an un-
stable ship. This is a significant improvement over the previous conditions related to
the existence of nonzero roots in the equation (20).

Finally
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It shall be noted that the all terms in the numerator of (26) are negative
except for the third element ‘ *

2
*
1 bc− ’ (hull related only), which is positive. Now eve-
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rything concerning the sign of F depends upon the particular magnitudes of all the
terms in F, including specially those connected with the rudder. No impact of the so-
called mixed partial derivatives connected with a1 or a2 parameters is here observed.

CASE STUDIES – NUMERICAL COMPUTATIONS

In view of the above derivations and for exemplary purposes, the selected
data of ships, for which figs. 1 – 3 have been constructed based on the full-mission
simulation, are presented in tab. 2. The optimised hull hydrodynamic coefficients in
the form of lookup tables (extracts only) are shown in tab. 3 (chemical tanker) and in
tab. 4 (ferry). The final parameters that appear in (17) and (18) are collected in tab.
5. The polynomial coefficients in (20) and (21) are demonstrated in tab. 6 (positive
values in bold).

The A parameter is practically non-positive (relying on the hull sway force
dependence upon the yaw velocity), the B coefficient is always negative. An uncer-
tainty often exists with regard to the sign of a1 or a2 hull parameters for an arbitrary
hull, and b2 or b2

* parameters. The latter are highly dependent upon the loading con-
ditions i.e. a trim by stern – b2

* is positive for the even keel or medium trim by stern
while b2 is the difference of b2

* and positive b2
", refer to (16) and (17). In tab. 7 are

indicated the particular contributions (components) of coefficients from C to F, see
(21) – positive values are in bold.

The agreement between the developed analytical steady turning model, see
(18), and the time-domain simulation with full-mission manoeuvring mathematical
models is excellent – fig. 5. The vanishing instability loop in fig. 1 (version ‘00n’ of
the chemical tanker) however disappeared in the analytical approach – note the ne-
gative values of the polynomial coefficients from A to F in tab. 6.

Table 2. Ship particulars

chemical tanker
– stable ‘00n’

chemical tanker
– unstable ‘21’

ferry

AR[m2] 12.2 24 (both rudders)

( )H
L a

c
+

°α∂
∂

1
][

0.0544 0.0680 0.0330

c12[ ] 1.0 0.5 0.5
w[ ] 0.33 0.15
cTh[ ] 4 1.5
L[m] 97.4 150
T[m] 7.1 5



HOW TO INTRODUCE COURSE DYNAMIC INSTABILITY...

11/2006 17

Table 3. Hull sway force and yaw moment coefficients for chemical tanker

Ωm\β 0° +10°
0.0000 0.0000 0.0434

+0.4472 0.0000 0.0556

cfyHm
Ωm\β 0° +10°

0.0000 0.00000 -0.01847
+0.4472 -0.02520 -0.03998

cmzHm

Table 4. Hull sway force and yaw moment coefficients for ferry

Ωm\β 0° +10°
0.0000 0.0000 0.0470

+0.4472 0.0000 0.0793

cfyHm
Ωm\β 0° +10°

0.0000 0.00000 -0.01254
+0.4472 -0.02000 -0.03003

cmzHm

Table 5. Values of equilibrium equation basic parameters

chemical tanker
– stable ‘00n’

chemical tanker
– unstable ‘21’

ferry

1a 0.00273 0.00722

1b 0.00434 0.00470
*
1c -0.27347 -0.20542

2a 0.000825 0.000561

2b -0.001847 -0.001254
*
2b 0.002428 0.001252

2c -0.056351 -0.044720

Rb1 0.00145 0.00091 0.00070

Rc1 0.04164 0.02603 0.01993

Re1 0.00219 0.00274 0.00187

Table 6. Values of polynomial coefficients (21)

chemical tanker
– stable ‘00n’

chemical tanker
– unstable ‘21’

ferry

A -0.000154 -0.000154 -0.000323
B -0.000245 -0.000245 -0.000210
C -0.000173 -0.000139 -0.000613
D -0.001090 -0.001054 -0.000731
E -0.000019 0.000015 -0.000291
F -0.000053 0.000124 -0.000127
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Table 7. Values and signs of particular contributions to polynomial coefficients (21)

term no.
1 2 3 4 5

chemical tanker (stable, ‘00n’)
C -0.000307 0.000226 -0.000057 -0.000034
D -0.000489 -0.000082 -0.000505 -0.000090 0.000077
E -0.000154 0.000226 -0.000057 -0.000034
F -0.000199 -0.000326 0.000664 -0.000090 -0.000101

chemical tanker (unstable, ‘21’)
C -0.000307 0.000226 -0.000036 -0.000021
D -0.000489 -0.000051 -0.000505 -0.000056 0.000048
E -0.000154 0.000226 -0.000036 -0.000021
F -0.000124 -0.000296 0.000664 -0.000056 -0.000063

ferry
C -0.000646 0.000115 -0.000072 -0.000011
D -0.000420 -0.000031 -0.000258 -0.000047 0.000025
E -0.000323 0.000115 -0.000072 -0.000011
F -0.000071 -0.000241 0.000257 -0.000047 -0.000025
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Fig. 5. Analytical approximate results vs. full-mission simulation

FINAL REMARKS

In respect of the derivations undertaken in the present study, the biggest
challenge in the future research seems to be how to establish the most sensitive pa-
rameters and execute a unique identification of them based on the parameters of the
spiral test curve. For a stable ship there is only one parameter, the curve slope at the
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origin of coordinates, that can be evaluated from the full scale manoeuvring trials.
For an unstable ship, one can easily specify at least additional three parameters –
point C (the nondimensional yaw velocity at null rudder angle) and point D with two
parameters (both the nondimensional yaw velocity and rudder angle). Such a sensi-
tivity analysis is not a simple task since the sensitivity, in general terms as the output
versus input increment, always depends upon the initial (reference) conditions. Con-
cerning the full-scale based unique identification, there is a need to decide what
parameters can be estimated by other methods or left unattended.

It is also really very interesting to build an analytical model, in a way quite
similar to the presented in the paper, which ‘controls’ the shape of the pull-out
manoeuvre curve. The pull-out test indicates a transient behaviour of course stability
– in the steady state conditions it converges to point C.

As aforementioned, the reversed spiral test proves to display some essential
parameters of an unstable ship behaviour. Just for testing the effect of various com-
binations of parameters in the full-mission manoeuvring simulation models, working
in the off-line (fast-time) mode, it seems indispensable to design a special automatic
controller to perform this trial.
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