MODELING THE LOCATION AND ROUTING PROBLEM FOR THE DISTRIBUTION OF LIQUEFIED NATURAL GAS

EWELINA CHŁOPIŃSKA 1, MACIEJ GUCMA 2

1Maritime University of Szczecin, Poland

2Maritime University of Szczecin, Poland

DOI: 10.1515/aon-2019-0006

ABSTRACT

At the time of the ongoing development of technology, first and foremost in industry and automation, attempts are made to devise increasingly innovative, environment-friendly technical solutions. The improvement of manufacturing processes allowed the use of natural gas as an energy carrier, currently the most valuable raw material. LNG is created from gaseous state in the process of liquefaction. This change in the state of matter allows the volume of gas to be reduced 600 times so that it can be profitably transported over long distances. In global trade, a quarter of natural gas is transported in a liquefied state. The process of gas liquefaction entails very thorough purification of the gas, separating compounds harmful to health and the natural environment. LNG is a very clean and safe fuel, characterized by, inter alia, complete elimination of moisture.
LNG use in sea shipping is reflected in the developments of the global maritime fleet. The projections of the growth of LNG-powered fleet are very optimistic [3]. Due to the numerous regulatory instruments to protect the environment, areas of strict sulphur emissions control (SECA) may in the future become areas crisscrossed mainly by ships using LNG as their primary fuel. There will be significant increase in the demand for natural gas [6], [8], [9]. This raw material can be effectively used to meet the energy needs of areas located away from the gas infrastructure, which will result in dynamic development of low sulphur fuel trade.

REFERENCES

[1] Biały R., Janusz P., Łoś M., i Szurlej A., „Analiza kosztów importu gazu ziemnego do Polski i ich wpływ na strukturę dostaw.”, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, nr 87, ss. 83–98, 2014.
[2] „BP Statistical Review of World Energy”, BP, 2017.
[3] Data of DNV GL, 2018.
[4] European Maritime Safety Agency., „The 0.1% sulphur in fuel requirement as from 1 January 2015 in SECAs – An assessment of available impact studies and alternative means of compliance.”, European Maritime Safety Agency., Technical report, 2010.
[5] European Statistical Office, „Market Forecast Report”, Belgia, 2017.
[6] Grzelak S., „Liquefied Natural Gas – a Strategic Fuel. Poland’s Security with Regard to Gas Fuels.”, Kontrola Państwowa, t. 60, nr 6 (365), ss. 133–145, 2015.
[7] Herdzik J., „Wstępna analiza opłacalności tworzenia sieci bunkrowania skroplonego gazu naturalnego LNG w portach Morza Bałtyckiego.”, Logistyka., nr 3, ss. 2359–2366, 2014.
[8] IGU, „World LNG Report.”, Norwegia, 2016 Edition., 2016.
[9] Kalski M., Nagy S., Rychlicki S., Siemek J., i Szulej A., „Gaz ziemny w Polsce – wydobycie, zużycie i import do roku 2030.”, Górnictwo i ekologia., t. 5, nr 3, ss. 27–40, 2010.
[10] Kwaśnicka H., „Sztuczna inteligencja. Algorytmy ewolucyjne – przykłady zastosowań.”, Zeszyt Naukowy Sztuczna Inteligencja., nr 1, 2002.
[11] Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne. Warszawa: Wydawnictwo Naukowo-Techniczne, 1999.
[12] Peňa-Reyes C. A. i Sipper M., „Evolutionary computation in medicine: an overview.”, Artif. Itell. Med., nr 19, ss. 1–23, 2000.
[13] Prognoza floty morskiej, 2017. On-line: www.cttm.am.szczecin.pl.
[14] Prognoza globalnego zapotrzebowania na LNG do 2030 roku.”, 2017. On-line: www.promy24.com