Estimation of Slant Tropospheric Delays from GNSS Observations with Using Precise Point Positioning Method

Stepan Savchuk 1, Alina Khoptar 2

1 Polish Air Force University, Dęblin, Poland

2Lviv Polytechnic National University, Ukraine

DOI: DOI: 10.1515/aon-2018-0017


Global Navigation Satellite Systems give opportunities for atmospheric parameters analysis in
behalf of solving many atmosphere monitoring tasks. The authors of this article demonstrated
possibility of slant tropospheric delays determination with using precise point positioning
method – PPP. The atmospheric parameters, retrieved from GNSS observations, including
zenith tropospheric delays, horizontal gradients, and slant tropospheric delays, are analyzed and evaluated. It was obtained slant tropospheric delays, along the satellite path, for each satellite, at a certain elevation angle and azimuth, at each time, instead of obtaining a single zenith tropospheric delay composed of all visible satellites at one time. The results obtained proved that suggested method was correct.


Global Navigation Satellite Systems (GNSS), atmosphere monitoring, precise point positioning method (PPP), zenith tropospheric delay, slant tropospheric delay


[1] Alberding GNSS Status Software, [online:] [access: 14.07.2018].
[2] Bar-Sever Y.E., Kroger P.M., and Borjesson J.A., Estimating Horizontal Gradients of
Tropospheric Path Delay with a single GPS Receiver. Journal of Geophysical Research,
Volume103, Issue B3, 1998, pp 5019-5035.
[3] Bernese GPS Software, Version 5.2 [online:] [access: 14.07.2018].
[4] Byung-Kyu Ch., Jeong-Ho B., Sung-Ki Ch., Jong-Uk P., and Pil-Ho P. Development of
Precise Point Positioning Method Using Global Positioning System Measurements.
Journal of Astronomy and Space Sciences, Volume. 28, No. 3, pp. 217-223.
[5] Internet resource of Atmospheric Research Services at the University of Wyoming (Canada) [Online:] [access: 14.07.2018].
[6] Introduction to GAMIT/GLOBK. At
[access: 14.07.2018].
[7] GipsyX Beta-Release Notes.
[access: 14.07.2018].
[8] GipsyX Beta documentation.
[9] Kablak N. I., Savchuk S. H., Dystantsiynyy monitorynh atmosfery (in Ukrainian).
Kosmichna nauka i tekhnolohiya. T. 18, № 2, 2012, S. 20–25.
[10] Kablak N., Suchasni pidkhody do vyznachennya ta vykorystannya troposfernykh zatrymok
GNSS-syhnaliv (in Ukrainian). Heodeziya, kartohrafiya i aerofotoznimannya, 2009,
Vypusk. 72, S. 22-27.
[11] Kačmařík M., Douša Ja., Dick G., Zus F., Brenot H., Möller G., Pottiaux E., Kapłon Ja.,
Hordyniec P., Václavovic P., and Morel L., Inter-technique validation of tropospheric
slant total delays. Atmospheric Measurement Techniques, Volume. 10, Issue 6, 10, 2017,
pp. 2183-2208.
[12] Khoptar A., Metodyka vyznachennya troposfernykh parametriv z sumisnykh danykh
GNSS i SLR sposterezhen (in Ukrainian). Zbirnyk naukovykh pratsʹ ZHT “Suchasni
dosyahnennya heodezychnoyi nauky ta vyrobnytstva”, 2017, Vypusk. II (34), C. 51-54.
[13] Khoptar A., Porivnyalʹnyy analiz pidkhodiv vyznachennya troposfernoyi zatrymky za
danymy radiozonduvannya ta GNSS sposterezhenʹ (in Ukrainian). Zbirnyk materialiv
Mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi molodykh vchenykh GeoTerrace2017, Lʹviv, Ukrayina, 2017.
[14] Krueger E., Schuler T., Arbesser-Rastburg B., The Standard Tropospheric Correction
Model for the European Satellite Navigation System Galileo. Proceeding General
Assembly URSI, New Delhi, India, 2005.
[15] Mendes V.B., Modeling the Neutral-Atmosphere Propagation Delay in Radiometric
Space Techniques. Technical Report, No. 199; New Brunswick, Canada, 1999.
[16] Official EPN server [online:] [access: 14.07.2018].

[17] Pazyak M. V., Zablotsʹkyy F. D., Porivnyannya volohoyi skladovoyi zenitnoyi
troposfernoyi zatrymky, vyvedenoyi iz GNSS-vymiryuvanʹ, z vidpovidnoyu velychynoyu iz
radiozonduvannya (in Ukrainian). Heodeziya, kartohrafiya i aerofotoznimannya, 2015,
Vypusk. 81, S. 16-24.
[18] Popov D. O., Distantsionnoye zondirovaniye okruzhayushchey sredy s ispol’zovaniyem
izlucheniy global’nykh navigatsionnykh sputnikovykh sistem: diss. kand. fiz.-mat. nauk:
01.04.03 (in Ukrainian), Khar’kov, 2017.
[19] Project HUSKROUA/1101/252 (SES project). At [access:
[20] Savchuk S. H., Zablotsʹkyy F. D., Monitorynh troposfernoyi vodyanoyi pary v zakhidniy
transkordonniy zoni Ukrayiny (in Ukrainian). Heodeziya, kartohrafiya i
aerofotoznimannya, 2016, Vypusk. 83, S. 21-33.
[21] Solheim F.S., Vivekanandan J., Ware R.H., Rocken Ch., Propagation delays induced in
GPS signals by dry air, water vapor, hydrometeors, and other particulates. Journal of
Geofisical Research, Volume. 104, No. D8, Apr. 27, 1999, pp. 9663-9670.
[22] Tregoning P., Boehm J., Niell A., Schuh H., Global Mapping Function (GMF): A new
empirical mapping function based on numerical weather model data. Geophysical
Research Letters, Volume 33, Issue 7, Apr. 4, 2006.
[23] Trimble Pivot Platform GNSS Infrastructure Software. Release notes (V. 2.1).
[access: 14.07.2018].
[24] Turchyn N., Zablotsʹkyy F., Suchasni pidkhody do vyznachennya troposfernoyi zatrymky
ta yiyi skladovykh (in Ukrainian). Heodeziya, kartohrafiya i aerofotoznimannya, 2013,
Vypusk. 78, S. 155-159.
[25] U.S. Standard Atmosphere, U.S. Government Printing Office, Washington, 1976.
[26] Zumberge J.F., Heflin M.B., Jefferson D.C., Watkins M.M., and Webb F.H., Precise
point positioning for the efficient and robust analysis of GPS data from large networks.
Journal of Geophysical Research, Volume. 6, No. 2, May 28, 2015, pp. 5005–5017.