Detection of Small Bottom Objects from Multibeam Echosounder Data

Dominik Iwen 1, Mariusz Wąż 2

1Hydrographic Support Squadron of the Polish Navy

2Polish Naval Academy, Gdynia, Poland

DOI: DOI: 10.1515/aon-2018-0015

ABSTRACT

Multibeam Echo Sounder Systems (MBES) shallow water surveys provide capability not
only acquiring bathymetric data useful for determining isobaths and mapping features on the
seafloor which may be a hazard to navigation. They also allow detection of objects smaller or
deeper than those required for the safety of seafaring and International Hydrography Organization (IHO) standards. In this article some of issues related to of efficient MBES shallow
water surveys are stressed. Additionally a draft of post-processing techniques and result data
format together with tools allowing extraction of bottom object from bathymetric data are presented.

KEYWORDS

Multibeam Echo sounder, bathymetric survey, bottom object, detection.

REFERENCES

[1] Białasiewicz J.T. (2004), Wavelets and Approximation (in Polish), Wydawnictwa Naukowo-Techniczne, Warszawa.
[2] Brodu N., Lague D. (2012). 3D terrestrial lidar data classification of complex natural
scenes using a multi-scale dimensionality criterion: applications in geomorphology.
ISPRS Journal of Photogrammetry and Remote Sensing.
[3] Csillag F., Kabos S. (2002). Wavelets, boundaries and the spatial analysis of landscape
pattern. Ecoscience 9(2).
[4] Contract Specifications for Hydrographic Surveys (2016), New Zealand Hydrographic
Authority, Sydney.
[5] Discover 4200 MP User’s Manual (2008), Edgetech, West Wareham.
[6] Gallant J.C., Wilson J.P. (2000). Primary Topographic Attributes. In Terrain Analysis:
Principles and Applications. John Wiley and Sons.

[7] https://www.hydroconferences.org/documents/hydroconferences/downloads/1/paper_12_-_chris_howlett.pdf, (12.10.2018).
[8] https//www.km.kongsberg.com/ks/web/nokbg0397.nsf/AllWeb/38E3552DFEE3BAE3C1257AF5004118FE/$file/ 369468_EM2040c_product_specification.pdf (05.09.2018).
[9] Hydrographic Surveying (2013). U.S. Army Corps of Engineers (USACE), Chapter 6,1.
[10]Iwen D. (2017). Horizontal accuracy issues during MBES surveys, Annual of navigation 24/2017.
[11] Lundblad E., Wright D.J., Miller J., Larkin A.M., Rinehart R., Naar D.F., Donahue
B.T., Anderson S.M., Battista T. (2006). A Benthic Terrain Classification Scheme for
American Samoa. Marine Geodesy 29(2).
[12]Makieła W., Gogolewski D. (2015). Criteria of the selection of wavelet base in relation
to the roughness of 3D surface (in Polish). Mechanik 3/2015.
[13]Maleika W. (2015). The influence of the grid resolution on the accuracy of the digital
terrain model used in seabed modeling. Marine Geophysical Research.
[14]Mallat S. (1999), A wavelet tour of signal processing. Academic Press, New York.
[15] Manual of hydrography, Publication C-13 (2011), IHO, Monaco.
[16]Riley S.J., DeGloria S.d., Elliot R. (1999). A terrain ruggedness index that quantifies
topographic heterogeneity. Intermountain Journal of Sciences 5(1–4).
[17] Sithole G., Vosselman G. (2004). Experimental comparison of filter algorithms for
bare-earth extraction from airborne laser scanning point clouds, ISPRS Journal of Photogrammetry and Remote Sensing, 5–101.
[18]Sonic 2024 Operator’s Manual (2014), R2Sonic LCC, Austin.
[19] Standards for Hydrographic Surveys (S44) (2008). IHO, Monaco.
[20] Tęgowski J., Nowak J., Hac B., Zamaryka M., Szefler K. (2010). Mapping seabed features from multibeam echosounder data using autocorrelation and multiscale wavelet
analyses. Hydroacoustics, Vol. 13.
[21] Valentine P.C., Fuller S.J., Scully L.A. (2004). Terrain Ruggedness Analysis and Distribution of Boulder Ridges in the Stellwagen Bank National Marine Sanctuary Region
(poster). Galway, Ireland: 5th International Symposium on Marine Geological and Biological Habitat Mapping (GeoHAB).
[22] Wilson M.F.J., O’connell B., Brown C., Guinan J.C., Grehan A.J. (2007). Multiscale
Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope, Marine Geodesy 30.