Current State of Art of Satellite Altimetry

Adam Łyszkowicz and Anna Bernatowicz 1

1Polish Air Force Academy, Dęblin, Poland

2Koszalin University of Technology, Poland

DOI: 10.1515/aon-2017-0003


One of the fundamental problems of modern geodesy is precise definition of the gravitational field and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth’s
environment. One of the major sources of gravity data is satellite altimetry that provides
gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data
to study local, regional and global geophysical processes, the geoid model in the areas of
oceans and seas. This technique can be successfully used to study the ocean mean dynamic
topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions
of IAS (International Altimetry Service).
This paper presents the achievements in satellite altimetry in all the above disciplines
obtained in the last years.


satellite altimetry, radar altimeter, waveform retracker, ocean gravity field model, sea level, gravity anomalies, ocean tides.


[1] Albertella A., Savcenko R., Janjic T., Rummel R., Bosch W., Schröter J., High
resolution dynamic ocean topography in the Southern Ocean from GOCE, ‘Geophysical Journal International’, 2012, Vol. 190, Issue 2, pp. 922–930.
[2] Andersen O. B., Cheng Y., Long term changes of altimeter range and geophysical
corrections at altimetry calibration sites, ‘Advances in Space Research’, 2013, Vol. 51,
Issue 8, pp.1468–1477.

[3] Andersen O. B., Knudsen P, Trimmer R., Improved high resolution altimetric gravity
field mapping, KMS2002 global marine gravity field, ‘Book Series: International
Association of Geodesy Symposia’, 2005, Vol. 128, pp. 326–331.
[4] Andersen O. B., Knudsen P., Kenyon S., Factor J. K., Holmes S., The DTU13
Global marine gravity field — first evaluation, OSTST Meeting 2013, [online],
TU13GRA.pdf [access 19.11.2016].
[5] Andersen O. B., Knudsen P., Kenyon S., Holmes, S., Global and arctic marine
gravity field from recent satellite altimetry (DTU13), 76th European Association of
Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy
— Incorporating SPE EUROPEC, 2014, pp. 3049–3053.
[6] Andersen O. B., Knudsen P., The role of satellite altimetry in gravity field modelling
in coastal areas, ‘Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy’, 2000, Vol. 25, Issue 1, pp. 17–24.
[7] Bosch W., Dettmering D., Schwatke C., Multi-mission cross-calibration of satellite
altimeters: constructinga long-term data record for global and regional sea level
change studies, ‘Remote Sensing’, 2014, Vol. 6, pp. 2255–2281.
[8] Bosch W., Savcenko R., Dettmering D., Schwatke C., A two decade time series
of eddy-resolving dynamic ocean topography (iDOT), Proceedings ‘20 Years of
Progress in Radar Altimetry’, Sept. 2012, Venice, Italy, ESA SP-710 [CD-ROM],
ESA/ESTEC, 2013.
[9] Cheng Y., Andersen O. B., A new global ocean tide model and its improvements in
shallow water and the Polar Regions, ‘Advances in Space Research’, 2012, Vol. 50,
pp. 1099–1106.
[10] Deng X., Andersen O. B., Cheng Y., Stewart M. G., Gharineiat Z., Estimation of
extreme sea levels from altimetry and tide gauges at the coast, 6th Coastal Altimetry
Workshop, Riva Del Garda, Italy, 20–21 September 2012.
[11] Garcia E., Smith W. H. F., Sandwell D. T, Retracking CryoSat-2, Envisat, and
Jason-1 Radar Altimetry Waveforms for Improved Gravity Field Recovery, ‘Geophysical Journal International’, 2014, Vol. 196, Issue 3, pp. 1402–1422.
[12] Gharineiat Z., Deng X., Application of the Multi Adaptive Regression Splines to
integrate sea level data from altimetry and tide gauges for monitoring extreme sea
level events, Marine Geodesy, 2015.
[13] Hwang C., Chang E. T. Y., Seafloor secrets revealved, ‘Science’, 2014, Vol. 346,
No. 6205, pp. 32–33.
[14] Hwang, C, Hsu H. J., Chang E. T. Y., Featherstone W. E., Tenzer R., Lien T. Y.,
Hsiao Y. S., Shih H. C., Jai P. H., New free-air and Bouguer gravity fields of Taiwan
from multiple platforms and sensors, ‘Tectonophysics’, 2014, Vol. 61, pp. 83–93.
[15] Idris N. H., Deng X., The retracking technique on multi-peak and quasi-specular
waveforms for Jason-1 and Jason-2 mission near the cost, ‘Marine Geodesy’, 2012,
35(S1), pp. 217–237.

[16] Knudsen P., Bingham R., Andersen O., Rio M. H., A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model,
‘Journal of Geodesy’, 2011, Vol. 85, pp. 861–879.
[17] Lee H. K., Shum C. K., Tseng K. H., Huang Z., Sohn H. G., Elevation changes of
Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry, ‘Remote Sensing of Environment’, 2013, Vol. 132, pp. 40–48.
[18] Mayer-Gürr T., Savcenko R., Bosch W., Daras I., Flechtner F., Dahle Ch., Ocean tides
from satellite altimetry and GRACE, ‘Journal of Geodynamics’, 2012, Vol. 59–60,
pp. 28–38.
[19] Richter A., Mendoza L., Perdomo R., Hormaechea J. L., Savcenko R., Bosch W.,
Dietrich R., Pressure tide gauge records from the Atlantic shelf off Tierra del Fuego,
southernmost South America, ‘Continental Shelf Res.’, 2012, Vol. 42, pp. 20–29.
[20] Savcenko R., Bosch W., EOT11a — Empirical Ocean Tide Model From Multi-
-Mission Satellite Altimetry, ‘DGFI Report’, 2012, No. 89.
[21] Singh A., Seitz F., Schwatke C., Inter-annual water storage changes in the Aral Sea
from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite
grawimetry, Elsevier, ‘Remote Sensing of Environment’, 2012, Vol. 123, pp. 187–195.
[22] Stammer D., Ray R. D., Andersen O. B., Arbic B. K., Bosch W., Carrère L., Cheng Y.,
Chinn D. S., Dushaw B. D., Egbert G. D., Erofeeva S. Y., Fok H. S., Green J. A. M.,
Griffiths S., King M. A., Lapin V., Lemoine F. G., Luthcke S. B., Lyard F., Morison J., Müller M., Padman L., Richman J. G., Shriver J. F., Shum C. K., Taguchi E.,
Yi Y., Accuracy assessment of global barotropic ocean tide models, ‘Reviews of
Geophysics’, 2014, Vol. 52, Issue 3, pp. 243–282.
[23] Sulistioadi Y., Tseng, K. Shum C., Hidayat H., Sumaryono M., Suhardiman A.,
Sunarso S., Satellite radar altimetry for monitoring small rivers and lakes in Indonesia, ‘Hydrology and Earth System Sciences’, 2015, Vol. 19, Issue 1, pp. 341–359.
[24] Tseng K. H., Shum C., Yi Y., Lee H., Cheng X., Wang X., Envisat Altimetry Radar
Waveform Retracking of Quasi-Specular Echoes Over Ice-Covered Qinghai Lake,
‘Terrestrial Atmospheric and Oceanic Sciences’ (TAO), 2013, Vol. 24, No. 4, Part I,
pp. 615–627.
[25] Wang X. W., Cheng X., Gong P., Shum C., Holland D. M., Li X. W., Freeboard
and mass extraction of the disintegrated Mertz Ice Tongue with remote sensing and
altimetry data, Remote Sensing of Environment, 2014, Vol. 144, pp. 1–10.
[26] Yang Y., Hwang C., Hsu H. J., D E Wang H., A sub-waveform threshold retracker for
ERS-1 altimetry: a case study in the Antarctic Ocean, ‘Computers & Geosciences’,
2011, Vol. 54, No. 1, pp. 113–118.